Advertisement

Bulletin of Experimental Biology and Medicine

, Volume 168, Issue 3, pp 413–417 | Cite as

Analysis of Viscoelastic Parameters of Fluids by Low-Frequency Piezoelastography

  • V. P. DemkinEmail author
  • S. V. Mel’nichuk
  • T. V. Rudenko
  • I. I. Tyutrin
  • V. V. Udut
Article

Theoretical and experimental analysis of viscoelastic properties of fluids at low oscillating shear stresses was performed. Mathematic approach for calculating the complex coefficient of viscosity on the basis of experimental data on the amplitude-phase characteristics measured by the method of low-frequency piezoelastography was developed. The dependencies of the amplitude and phase shift of the signal recorded by a piezoelectric detector of a ARP-01M Mednord piezoelectric thromboelastograph on the frequency of forced oscillations of a resonator needle in air, water, and glycerin at fixed temperature of 37°C were studied. It was found that with increasing fluid viscosity, the resonance frequency of oscillations decreases in comparison with the frequency of oscillations in air.

Key Words

viscoelastic characteristics of a liquid low-frequency piezoelastography method oscillatory viscosimetry complex viscosity coefficient mathematical modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vargaftik NB. Handbook of Thermophysical Properties of Gases and Liquids. Moscow, 1972. Russian.Google Scholar
  2. 2.
    Tyutrin II, Udut VV. Low Frequency Piezothromboelastography of the Whole Blood: Algorithms of Diagnostics and Correction of Hemostasis Disorders. Tomsk, 2016. Russian.Google Scholar
  3. 3.
    Udut VV, Tyutrin II, Solov’ev MA, Klimenkova VF, Malyugin EF, Karchagina OS, Borodulina EV, Turenko AV. Global Tests in Evaluation of the Function of Pro-and Anticoagulant Systems: Present and Future. Bull. Exp. Biol. Med. 2015;159(2):205-208. doi:  https://doi.org/10.1007/s10517-015-2923-8.CrossRefPubMedGoogle Scholar
  4. 4.
    Anand M, Rajagopal KR. A Short review of advances in the modelling of blood rheology and clot formation. Fluids. 2017;2(3). ID 35. DOI:  https://doi.org/10.3390/fluids2030035 CrossRefGoogle Scholar
  5. 5.
    Antonova N. On some mathematical models in hemorheology. Biotechnol. Biotec. Eq. 2012;26(5):3286-3291.CrossRefGoogle Scholar
  6. 6.
    Antonova N. Methods in blood rheology — from theoretical and experimental approach to clinical applications. Series on Biomechanics. 2012;27(1-2):44-50.Google Scholar
  7. 7.
    Cowan AQ, Cho DJ, Rosenson RS. Importance of blood rheology in the pathophysiology of atherothrombosis. Cardiovasc. Drugs Ther. 2012;26(4):339-348.CrossRefGoogle Scholar
  8. 8.
    Derjaguin BV, Bazaron UB, Lamazhapova KD, Tsidypov BD. Shear elasticity of low-viscosity liquids at low frequencies. Phys. Rev. A. 1990;42(4):2255-2258.CrossRefGoogle Scholar
  9. 9.
    Derjaguin BV, Bazaron UB, Lamazhapova KhD, Tsidypova BD. Shear elasticity of low-viscosity liquids at low frequencies. Prog. Surf. Sci. 1992;40(1-4):462-465.CrossRefGoogle Scholar
  10. 10.
    Marcinkowska-Gapinska A, Kowal P. Analysis of complex viscosity in a group of patients with circulation disorders. Acta Phys. Pol. A. 2012;121(1):A54-A56.CrossRefGoogle Scholar
  11. 11.
    Rheology — New Concepts, Applications and Methods. Durairaj R, ed. InTECH, 2013.Google Scholar
  12. 12.
    Robertson AM, Sequeira A, Marina V. Kameneva MV. Hemorheology. Hemodynamical Flows. Oberwolfach Seminars. Basel, 2008;37:63-120.Google Scholar
  13. 13.
    Sousa PC, Carneiro J, Vaz R, Cerejo A, Pinho FT, Alves MA, Oliveira MS. Shear viscosity and nonlinear behavior of whole blood under large amplitude oscillatory shear. Biorheology. 2013;50(5-6):269-282.CrossRefGoogle Scholar
  14. 14.
    Thurston GB. Viscoelasticity of human blood. Biophys. J. 1972;12(9):1205-1217.CrossRefGoogle Scholar
  15. 15.
    Yilmaz F, Gundogdu MY. A critical review on blood flow in large arteries; relevance to blood rheology, viscosity models, and physiologic conditions. Korea-Aust. Rheol. J. 2008;20(4):197-211.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • V. P. Demkin
    • 1
    Email author
  • S. V. Mel’nichuk
    • 1
  • T. V. Rudenko
    • 1
  • I. I. Tyutrin
    • 3
  • V. V. Udut
    • 1
    • 2
  1. 1.National Research Tomsk State UniversityTomskRussia
  2. 2.E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical CenterTomskRussia
  3. 3.Department of Anesthesiology, Resuscitation, and Intensive TherapySiberian Medical University, Ministry of Health of the Russian FederationTomskRussia

Personalised recommendations