Advertisement

Bulletin of Experimental Biology and Medicine

, Volume 168, Issue 1, pp 95–98 | Cite as

Fibroin-Gelatin Composite Stimulates the Regeneration of a Splinted Full-Thickness Skin Wound in Mice

  • A. Yu. ArkhipovaEmail author
  • D. A. Kulikov
  • A. M. Moisenovich
  • V. V. Andryukhina
  • Yu. V. Chursinova
  • Yu. N. Filyushkin
  • A. V. Fedulov
  • M. A. Bobrov
  • D. V. Mosalskaya
  • P. A. Glazkova
  • A. V. Kulikov
  • A. E. Nalivkin
  • A. V. Molochkov
  • D. Yu. Semenov
BIOTECHNOLOGIES
  • 9 Downloads
Part of the following topical collections:
  1. Topical Collection on Gun Violence

The effects of composite fibroin-gelatin microparticles (100-250 μ) on the rate of wound healing and regeneration under conditions of contraction prevention were studied on the model of splinted full-thickness skin wound in a mouse. Subcutaneous injection of these particles into the defect area accelerated wound healing and promoted re-epithelialization and recovery of normal structure of the epidermis. In addition, the composite microparticles promoted the formation of connective tissue of characteristic structure, replacing the derma over the entire defect, and stimulated regeneration of subcutaneous muscle (panniculus carnosus) and skin appendages (sebaceous glands and hair follicles).

Keywords

fibroin gelatin regeneration splinted full-thickness skin wound in mouse 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arkhipova AY, Nosenko MA, Malyuchenko NV, Zvartsev RV, Moisenovich AM, Zhdanova AS, Vasil’eva TV, Gorshkova EA, Agapov II, Drutskaya MS, Nedospasov SA, Moisenovich MM. Effects of fibroin microcarriers on inflammation and regeneration of deep skin wounds in mice. Biochemistry (Mosc.). 2016;81(11):1251-1260.CrossRefGoogle Scholar
  2. 2.
    Bonartsev A, Yakovlev S, Boskhomdzhiev A, Zharkova I, Bagrov D, Myshkina V, Mahina T, Kharitonova E, Samsonova O, Zernov A, Zhuikov V, Efremov Y, Voinova V, Bonartseva G, Shaitan K. The terpolymer produced by Azotobacter chroococcum 7B: effect of surface properties on cell attachment. PLoS One. 2013;8(2). ID e57200. doi:  https://doi.org/10.1371/journal.pone.0057200 CrossRefGoogle Scholar
  3. 3.
    Davis TA, Longcor JD, Hicok KC, Lennon GG. Prior injury accelerates subsequent wound closure in a mouse model of regeneration. Cell Tissue Res. 2005;320(3):417-426.CrossRefGoogle Scholar
  4. 4.
    Ellis S, Lin EJ, Tartar D. Immunology of wound healing. Curr. Dermatol. Rep. 2018;7(4):350-358.CrossRefGoogle Scholar
  5. 5.
    Eming SA, Martin P, Tomic-Canic M. Wound repair and regeneration: mechanisms, signaling, and translation. Sci. Transl. Med. 2014;6. ID 265sr6. doi:  https://doi.org/10.1126/scitranslmed.3009337 CrossRefGoogle Scholar
  6. 6.
    Galiano RD, Michaels J 5th, Dobryansky M, Levine JP, Gurtner GC. Quantitative and reproducible murine model of excisional wound healing. Wound Repair Regen. 2004;12(4):485-492.CrossRefGoogle Scholar
  7. 7.
    Martin P. Wound healing — aiming for perfect skin regeneration. Science. 1997;276:75-81.CrossRefGoogle Scholar
  8. 8.
    Moisenovich MM, Malyuchenko NV, Arkhipova AY, Goncharenko AV, Kotlyarova MS, Davydova LI, Vasil’eva TV, Bogush VG, Agapov II, Debabov VG, Kirpichnikov MP. Recombinant 1F9 spidroin microgels for murine full-thickness wound repairing. Dokl. Biochem. Biophys. 2016;466:9-12.CrossRefGoogle Scholar
  9. 9.
    Nosenko MA, Maluchenko NV, Drutskaya MS, Arkhipova AY, Agapov II, Nedospasov SA, Moisenovich MM. Induction of ICAM-1 expression in mouse embryonic fibroblasts cultured on fibroin-gelatin scaffolds. Acta Naturae. 2017;9(3):89-93.CrossRefGoogle Scholar
  10. 10.
    Nosenko MA, Moysenovich AM, Zvartsev RV, Arkhipova AY, Zhdanova AS, Agapov II, Vasilieva TV, Bogush VG, Debabov VG, Nedospasov SA, Moisenovich MM, Drutskaya MS. Novel biodegradable polymeric microparticles facilitate scarless wound healing by promoting re-epithelialization and inhibiting fibrosis. Front. Immunol. 2018;9. ID 2851. doi: https://doi.org/10.3389/ fimmu.2018.02851Google Scholar
  11. 11.
    Wong VW, Sorkin M, Glotzbach JP, Longaker MT, Gurtner GC. Surgical approaches to create murine models of human wound healing. J. Biomed. Biotechnol. 2011;2011. ID 969618. doi:  https://doi.org/10.1155/2011/969618 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. Yu. Arkhipova
    • 1
    • 2
    Email author
  • D. A. Kulikov
    • 2
  • A. M. Moisenovich
    • 1
  • V. V. Andryukhina
    • 2
  • Yu. V. Chursinova
    • 2
  • Yu. N. Filyushkin
    • 2
  • A. V. Fedulov
    • 2
  • M. A. Bobrov
    • 2
  • D. V. Mosalskaya
    • 2
  • P. A. Glazkova
    • 2
  • A. V. Kulikov
    • 3
  • A. E. Nalivkin
    • 2
  • A. V. Molochkov
    • 2
  • D. Yu. Semenov
    • 2
  1. 1.M. V. Lomonosov Moscow State UniversityMoscowRussia
  2. 2.M. F. Vladimirsky Moscow Regional Research and Clinical InstituteMoscowRussia
  3. 3.Institute of Theoretical and Experimental BiophysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations