Advertisement

Bulletin of Experimental Biology and Medicine

, Volume 168, Issue 1, pp 10–13 | Cite as

Heparin Modulates the Main Properties of the Central Nervous System in Experimental Post-Traumatic Stress Disorder: A New Concept of the Mechanisms of Pathogenesis and Treatment

  • M. V. KondashevskayaEmail author
GENERAL PATHOLOGY AND PATHOPHYSIOLOGY
  • 8 Downloads

Elevated plus-maze test was used to reveal the role of excitation and inhibition mechanisms in the CNS in the organization of the behavior of male Wistar rats under normal conditions and during modeling experimental post-traumatic stress disorder (with or without administration of low doses of high-molecular-weight heparin). The data about insufficiency in the system of excitation mechanisms and pronounced excess in the system of inhibition mechanisms in post-traumatic stress disorder are prioritized. Heparin seems to be a promising and effective preparation to cope with extreme psychotraumatic abnormalities in CNS.

Key Words

post-traumatic stress disorder elevated plus-maze behavior heparin rat 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dubrovina NI. GABA-Receptors in Modulation of Fear Memory Extinction. Zh. Vyssh. Nervn. Deyat. 2016;66(2):131-147. Russian.Google Scholar
  2. 2.
    Kondashevskaya MV. Heparin, a New Paradigm of the Effects. Moscow, 2011. Russian.Google Scholar
  3. 3.
    Nikol’skaya KA, Savonenko AV, Osipov AI, Eshchenko OV, Karas’ AYa. Informational role of instincts in organization of purposeful behavior. Uspekhi Sovremen. Biol. 1995; 115(4):390-396. Russian.Google Scholar
  4. 4.
    Nikol’skaya KA, Shpin’kova VN, Dovedova EL, Sergutina AV, Getshtein LM. Typology of cognitive activity in the neurochemical parameters of the animal brain. Issledovano Rossii. 2007;16:150-179. Russian.Google Scholar
  5. 5.
    Alzoubi KH, Al Subeh ZY, Khabour OF. Evaluating the protective effect of etazolate on memory impairment, anxiety- and depression-like behaviors induced by posttraumatic stress disorder. Brain Res. Bull. 2017;135:185-192.CrossRefGoogle Scholar
  6. 6.
    Benedek DМ, Ursano RJ. Posttraumatic stress disorder: from phenomenology to clinical practice. Focus. 2009;7(2):160-175.CrossRefGoogle Scholar
  7. 7.
    Chao LL, Tosun D, Woodward SH, Kaufer D, Neylan TC. Preliminary Evidence of Increased Hippocampal Myelin Content in Veterans with Posttraumatic Stress Disorder. Front Behav Neurosci. 2015;9:333. doi:  https://doi.org/10.3389/fnbeh.2015.00333 CrossRefPubMedCentralGoogle Scholar
  8. 8.
    Kondashevskaya MV. Experimental Evaluation of the Effects of Low-Dose Heparin on the Behavior and Morphofunctional Status of the Liver in Wistar Rats with Posttraumatic Stress Disorders. Bull. Exp. Biol. Med. 2018;164(4):488-492.CrossRefGoogle Scholar
  9. 9.
    Kondashevskaya MV, Ponomarenko EA. Features of Behavioral Changes Accompanied by Decreases in Corticosterone Levels in Post-Traumatic Stress Disorder. Experimental Application of Novel Models and Test Methods. Neurosci. Behav. Physiol. 2018;48(5):521-527.Google Scholar
  10. 10.
    Lee B, Shim I, Lee H, Hahm DH. Effect of oleuropein on cognitive deficits and changes in hippocampal brain-derived neurotrophic factor and cytokine expression in a rat model of post-traumatic stress disorder. J. Nat. Med. 2018;72(1):44-56.CrossRefGoogle Scholar
  11. 11.
    Li R, Tong J, Tan Y, Zhu S, Yang J, Ji M. Low molecular weight heparin prevents lipopolysaccharide induced-hippocampus-dependent cognitive impairments in mice. Int. J. Clin. Exp. Pathol. 2015;8(8):8881-8891.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Li X, Han F, Liu D, Shi Y. Changes of Bax, Bcl-2 and apoptosis in hippocampus in the rat model of post-traumatic stress disorder. Neurol. Res. 2010;32(6):579-586.CrossRefGoogle Scholar
  13. 13.
    Russman Block S, King AP, Sripada RK, Weissman DH, Welsh R, Liberzon I. Behavioral and neural correlates of disrupted orienting attention in posttraumatic stress disorder. Cogn. Affect Behav. Neurosci. 2017;17(2):422-436.CrossRefGoogle Scholar
  14. 14.
    Török B, Sipos E, Pivac N, Zelena D. Modelling posttraumatic stress disorders in animals. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2019;90:117-133.CrossRefGoogle Scholar
  15. 15.
    Yehuda R, Seckl J. Minireview: Stress-related psychiatric disorders with low cortisol levels: a metabolic hypothesis. Endocrinology. 2011;152(12):4496-4503.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Research Institute of Human MorphologyMoscowRussia

Personalised recommendations