Advertisement

Bulletin of Experimental Biology and Medicine

, Volume 167, Issue 6, pp 791–794 | Cite as

Peculiarities of RIG-1 Expression in Placental Villi in Preeclampsia

  • N. V. Nizyaeva
  • N. A. Lomova
  • E. Yu. Amiraslanov
  • N. E. Kan
  • M. N. Nagovitsyna
  • A. I. ShchegolevEmail author
Article
  • 9 Downloads

The expression of RIG-1 in placenta samples was assessed in women of reproductive age with early- and late-onset preeclampsia and cesarean delivery at 27-39 weeks of gestation. The highest expression of RIG-1 was found in the syncytiotrophoblast of placental villi in the group with uncomplicated full-term pregnancy (normal); RIG-1 expression in groups with early- and late-onset preeclampsia was significantly (p<0.01) lower. In decidual cells, RIG-1 expression was also maximum in normal pregnancy and significantly (p<0.01) lower in lateonset preeclampsia. In the endothelium of villous capillaries, the maximum expression was observed in normal full-term pregnancy and in late-onset preeclampsia, while in early-onset preeclampsia this parameter was significantly (p<0.01) lower. It can be assumed that different variants of preeclampsia are mediated by similar pathogenetic mechanisms, including those related to immature molecular profile of the trophoblast and decidual cells, probably due to impaired stem cell activity in the placenta determining higher vulnerability and reduced regeneration capacity of the placental tissue. This is due to the fact that RIG-1 is one of the important signaling molecules that promote activation of stem cell and tissue regeneration.

Key Words

decidual cells placenta preeclampsia RIG-1 trophoblast 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ziganshina MM, Nikolaeva MA, Shilova NV, Khasbiullina NR, Novakovsky ME, Bovin NV, Kan NE, Sergunina OA, Vavina OV, Tyutyunnik NV, Sukhikh GT, Nikolaeva AV, Bot I, Tyutyunnik VL. Autoantibodies against endothelial antigens in preeclampsia. Akush. Gin. 2016;(3):24-31. Russian.Google Scholar
  2. 2.
    Sukhikh GT, Silachev DN, Goryunov KV, Volochaeva MV, Shmakov RG. Role of stem cell dysfunction in the development of great obstetrical syndromes. Akush. Gin. 2018;(7):5-11. Russian.CrossRefGoogle Scholar
  3. 3.
    Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124(4):783-801.CrossRefGoogle Scholar
  4. 4.
    Chen N, Li X, Li P, Pan Z, Ding Y, Zou D, Zheng L, Zhang Y, Li L, Xiao L, Song B, Cui Y, Cao H, Zhang H. Enterovirus 71 inhibits cellular type I interferon signaling by inhibiting host RIG-I ubiquitination. Microb. Pathog. 2016;100:84-89.CrossRefGoogle Scholar
  5. 5.
    De Lorenzo G, Ferrari S, Cervone F, Okun E. Extracellular DAMPs in Plants and Mammals: Immunity, Tissue Damage and Repair. Trends Immunol. 2018;39(11):937-950.CrossRefGoogle Scholar
  6. 6.
    Dong X, Gou W, Li C, Wu M, Han Z, Li X, Chen Q. Proteinuria in preeclampsia: Not essential to diagnosis but related to disease severity and fetal outcomes. Pregnancy Hypertens. 2017;8:60-64.CrossRefGoogle Scholar
  7. 7.
    Leung DW, Basler CF, Amarasinghe GK. Molecular mechanisms of viral inhibitors of RIG-I-like receptors. Trends Microbiol. 2012;20(3):139-146.CrossRefGoogle Scholar
  8. 8.
    Linehan MM, Dickey TH, Molinari ES, Fitzgerald ME, Potapova O, Iwasaki A, Pyle AM. A minimal RNA ligand for potent RIG-I activation in living mice. Sci. Adv. 2018;4(2). e1701854. doi: 10.1126/sciadv.1701854.CrossRefGoogle Scholar
  9. 9.
    Loo YM, Gale M Jr. Immune signaling by RIG-I-like receptors. Immunity. 2011;34(5):680-692.CrossRefGoogle Scholar
  10. 10.
    Nizyaeva NV, Kulikova GV, Nagovitsyna MN, Kan NE, Prozorovskaya KN, Shchegolev AI, Sukhikh GT. Expression of MicroRNA-146a and MicroRNA-155 in Placental Villi in Early- and Late-Onset Preeclampsia. Bull. Exp. Biol. Med. 2017;163(3):394-399.CrossRefGoogle Scholar
  11. 11.
    Nizyaeva N, Sukhacheva T, Kulikova G, Shchegolev A, Nagovitsyna M, Serov R, Sukhikh G. Ultrastructure features of syncytiotrophoblast and syncytial knots of placenta villi in cases of preeclampsia. Virchows Archiv. 2017;471(Suppl. 1):S231.Google Scholar
  12. 12.
    Sayed N, Ospino F, Himmati F, Lee J, Chanda P, Mocarski ES, Cooke JP. Retinoic Acid Inducible Gene 1 Protein (RIG1)-Like Receptor Pathway Is Required for Efficient Nuclear Reprogramming. Stem Cells. 2017;35(5):1197-1207.CrossRefGoogle Scholar
  13. 13.
    Sayed N, Wong WT, Ospino F, Meng S, Lee J, Jha A, Dexheimer P, Aronow BJ, Cooke JP. Transdifferentiation of human fibroblasts to endothelial cells: role of innate immunity. Circulation. 2015;131(3):300-309.CrossRefGoogle Scholar
  14. 14.
    Tyschik EA, Shcherbakova SM, Ibragimov RR, Rebrikov DV. Transplacental transmission of torque teno virus. Virol J. 2017;14(1):92. doi:  https://doi.org/10.1186/s12985-017-0762-0 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Vinketova K, Mourdjeva M, Oreshkova T. Human Decidual Stromal Cells as a Component of the Implantation Niche and a Modulator of Maternal Immunity. J. Pregnancy. 2016;2016. 8689436. doi: 10.1155/2016/8689436CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • N. V. Nizyaeva
    • 1
  • N. A. Lomova
    • 1
  • E. Yu. Amiraslanov
    • 1
  • N. E. Kan
    • 1
  • M. N. Nagovitsyna
    • 1
  • A. I. Shchegolev
    • 1
    Email author
  1. 1.V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology, and PerinatologyMinistry of Health of the Russian FederationMoscowRussia

Personalised recommendations