Advertisement

Bulletin of Experimental Biology and Medicine

, Volume 167, Issue 5, pp 634–636 | Cite as

Anti-Ischemic Activity of Fabomotizole Hydrochloride under Conditions of Endothelial Dysfunction

  • I. B. Tsorin
  • V. V. Barchukov
  • M. B. Vititnova
  • S. A. KryzhanovskiiEmail author
  • S. B. Seredenin
PHARMACOLOGY AND TOXICOLOGY
  • 1 Downloads

Anti-ischemic activity of fabomotizole hydrochloride was studied on the model of subendocardial ischemia in rats with endothelial dysfunction. Endothelial dysfunction was modeled by intragastric administration of methionine (3 g/kg, once a day for 7 days). Acute subendocardial ischemia was induced in narcotized rats by intraperitoneal injection of isoproterenol (20 μg/kg/min over 5 min). Fabomotizole hydrochloride (intraperitoneally, 15 mg/kg) significantly reduced isoproterenol-induced ST segment depression in animals with endothelial dysfunction and with intact vasculature.

Key Words

fabomotizole hydrochloride σ1-receptors subendocardial ischemia endothelial dysfunction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Korokin MV, Pokrovskii MV, Kochkarov VI, Gudyrev OS, Pokrovskaia TG, Korokina LV, Polyanskaya OS. Research of endothelio-and cardioprotective effects of enalapril, lozartan and amlodipin at modelling hyperhomocystein induced endothelial dysfunction. Ross. Med.-Biol. Vestn. 2014;22(1):60-65. Russian.CrossRefGoogle Scholar
  2. 2.
    Kryzhanovskyi SA, Sorokina AV, Stolyaruck VN, Vititnova MB, Miroshkina IA, Tsorin IB, Durnev AD, Seredenin SB. Study of anti-ischemic effect of afobazole in experimental myocardial infarction. Bull. Exp. Biol. Med. 2011;150(3):316-319.CrossRefGoogle Scholar
  3. 3.
    Seredenin SB, Blednov JuA, Savel’ev VL, Mozhaeva TJa, Ragimov KhS, Jarkova MA. Patent RU No. 2061686. 2-Mercaptobenzimidazole derivatives having selective anxiolytic activity. Bull. No. 16. Published June 10, 1996.Google Scholar
  4. 4.
    Seredenin SB, Voronin MV. Neuroreceptor mechanisms involved in the action of afobazole. Eksp. Klin. Farmakol. 2009;72(1):3-11. Russian.Google Scholar
  5. 5.
    Seredenin SB, Voronina TA, Naznamov GG, Blednov YuA, Badyshtov BA, Viglinskaya IV, Kozlovskaya MM, Kolotilinskaya NV, Savel’ev VL, Garibova TL, Val’dman EA, Yarkova MA. Pharmacogenetic concept anxioselective effect. Vestn. Ross. Akad. Med. Nauk. 1998;(11):3-9. Russian.Google Scholar
  6. 6.
    Seredenin SB, Tsorin IB, Vititnova MB, Stolyaruk VN, Chichkanov GG, Kryzhanovskii SA. On the mechanism of anti-ischemic effects of afobazole. Bull. Exp. Biol. Med. 2013;155(6):760-763.CrossRefGoogle Scholar
  7. 7.
    Abdullah CS, Alam S, Aishwarya R, Miriyala S, Panchatcharam M, Bhuiyan MAN, Peretik JM, Orr AW, James J, Osinska H, Robbins J, Lorenz JN, Bhuiyan MS. Cardiac dysfunction in the Sigma 1 receptor knockout mouse associated with impaired mitochondrial dynamics and bioenergetics. J. Am. Heart Assoc. 2018;7(20). ID e009775. doi:  https://doi.org/10.1161/JAHA.118.009775
  8. 8.
    Bhuiyan MS, Fukunaga K. Targeting sigma-1 receptor signaling by endogenous ligands for cardioprotection. Exp. Opin. Ther. Targets. 2011;15(2):145-155.CrossRefGoogle Scholar
  9. 9.
    Bhuiyan MS, Tagashira H, Fukunaga K. Dehydroepiandrosterone mediated stimulation of sigma-1 receptor activates Akt-eNOSsignaling in the thoracic aorta of ovariectomized rats with abdominal aortic banding. Cardiovasc. Ther. 2011;29:219-230.CrossRefGoogle Scholar
  10. 10.
    Bhuiyan MS, Tagashira H, Shioda N, Fukunaga K. Targeting sigma-1 receptorwith fluvoxamine ameliorates pressure-overload induced hypertrophy and disfunctions. Exp. Opin. Ther. Targets. 2010;14(10):1009-1022.CrossRefGoogle Scholar
  11. 11.
    Dimmeler S, Hermann C, Zeiher AM. Apoptosis of endothelial cells. Contribution to the pathophysiology of atherosclerosis. Eur. Cytokine Netw. 1998;9(4):697-698.PubMedGoogle Scholar
  12. 12.
    Hamilton CA, Berg G, Mcintyre M, Mcphaden AR, Reid JL, Dominiczak AF. Effects of nitric oxide and superoxide on relaxation in human artery and vein. Atherosclerosis. 1997;133(1):77-86.CrossRefGoogle Scholar
  13. 13.
    Tagashira H, Matsumoto T, Taguchi K, Zhang C, Han F, Ishida K, Nemoto S, Kobayashi T, Fukunaga K. Vascular endothelial σ1-receptor stimulation with SA4503 rescues aortic relaxation via Akt/eNOS signaling in ovariectomized rats with aortic banding. Circ. J. 2013;77(11):2831-2840.CrossRefGoogle Scholar
  14. 14.
    Trujillo AN, Katnik C, Cuevas J, Cha BJ, Taylor-Clark TE, Breslin JW. Modulation of mesenteric collecting lymphatic contractions by σ1-receptor activation and nitric oxide production. Am. J. Physiol. Heart Circ. Physiol. 2017;313(4):H839-H853.CrossRefGoogle Scholar
  15. 15.
    Yamamoto S, Matsui K, Sasabe M, Ohashi N. Effect of an orally active Na+/H+ exchange inhibitor, SMP-300, on experimental angina and myocardial infarction models in rats. Cardiovasc. Pharmacol. 2002;39(2):234-241.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • I. B. Tsorin
    • 1
  • V. V. Barchukov
    • 1
  • M. B. Vititnova
    • 1
  • S. A. Kryzhanovskii
    • 1
    Email author
  • S. B. Seredenin
    • 1
  1. 1.V. V. Zakusov Research Institute of PharmacologyMoscowRussia

Personalised recommendations