Tumor Cell Behavior in Porous Hydrogels: Effect of Application Technique and Doxorubicin Treatment

  • M. H. Zoughaib
  • D. T. Luong
  • Z. Y. Siraeva
  • A. A. Yergeshov
  • T. I. Salikhova
  • S. V. Kuznetsova
  • R. G. Kiyamova
  • T. I. AbdullinEmail author

The effect of porosity on diffusion characteristics of scaffolds and invasive capacity of MCF-7 and PC-3 tumor cells was studied for gelatin hydrogels. According to MTS test results, the efficiency of population of a macroporous cryogel by cells applied by different techniques increased in the following order: migration from the monolayer<surface adhesion<<injection. Tumor cells in the cryogel differed by the migration and aggregation activity; injection route ensured a more uniform and dense population. In the cryogel-based culture, the cytotoxic effect of doxorubicin was 3-lower than in monolayer culture, which can be explained by supporting effect of the scaffold on cell growth and clustering. The results are of interest for the creation of tumor models and grafts with controlled properties.

Key Words

3D models of tumors porous hydrogels tumor cells scaffold population and analysis doxorubicin resistance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yergeshov AA, Siraeva ZY, Kazakova RR, Mullin RI, Davliev DM, Zakirova AA, Salikhova TI, Kuznetsova EV, Luong DT, Savina IN, Abdullin TI. Effect of gelatin cryogel on proliferation and synthetic activity of fibroblasts in excision wound model. Geny Kletki. 2015;10(4):29-33. Russian.Google Scholar
  2. 2.
    Asghar W, El Assal R, Shafiee H, Pitteri S, Paulmurugan R, Demirci U. Engineering cancer microenvironments for in vitro 3-D tumor models. Mater. Today (Kidlington). 2015;18(10):539-553.CrossRefGoogle Scholar
  3. 3.
    Campbell JJ, Husmann A, Hume RD, Watson CJ, Cameron RE. Development of three-dimensional collagen scaffolds with controlled architecture for cell migration studies using breast cancer cell lines. Biomaterials. 2017;114:34-43.CrossRefGoogle Scholar
  4. 4.
    Cavo M, Fato M, Peñuela L, Beltrame F, Raiteri R, Scaglione S. Microenvironment complexity and matrix stiffness regulate breast cancer cell activity in a 3D in vitro model. Sci. Rep. 2016;6. ID 35367. doi:
  5. 5.
    Chen L, Xiao Z, Meng Y, Zhao Y, Han J, Su G, Chen B, Dai J. The enhancement of cancer stem cell properties of MCF-7 cells in 3D collagen scaffolds for modeling of cancer and anticancer drugs. Biomaterials. 2012;33(5):1437-1444.CrossRefGoogle Scholar
  6. 6.
    Cruz-Acuña R, García AJ. Synthetic hydrogels mimicking basement membrane matrices to promote cell-matrix interactions. Matrix Biol. 2017;57-58, P. 324-333.Google Scholar
  7. 7.
    David L, Dulong V, Le Cerf D, Cazin L, Lamacz M, Vannier JP. Hyaluronan hydrogel: an appropriate three-dimensional model for evaluation of anticancer drug sensitivity. Acta Biomater. 2008;4(2):256-263.CrossRefGoogle Scholar
  8. 8.
    Del Bufalo F, Manzo T, Hoyos V, Yagyu S, Caruana I, Jacot J, Benavides O, Rosen D, Brenner M.K. 3D modeling of human cancer: A PEG-fibrin hydrogel system to study the role of tumor microenvironment and recapitulate the in vivo effect of oncolytic adenovirus. Biomaterials. 2016;84:76-85.CrossRefGoogle Scholar
  9. 9.
    Dunne L.W, Huang Z, Meng W, Fan X, Zhang N, Zhang Q, An Z. Human decellularized adipose tissue scaffold as a model for breast cancer cell growth and drug treatments. Biomaterials. 2014;35(18):4940-4949.CrossRefGoogle Scholar
  10. 10.
    Fisher SA, Anandakumaran PN, Owen SC, Shoichet MS. Tuning the microenvironment: click-crosslinked hyaluronic acid-based hydrogels provide a platform for studying breast cancer cell invasion. Adv. Funct. Mater. 2015;25(46):7163-7172.CrossRefGoogle Scholar
  11. 11.
    Gun’ko VM, Savina IN, Mikhalovsky SV. Cryogels: morphological, structural and adsorption characterisation. Adv. Colloid Interface Sci. 2013;187-188:1-46.Google Scholar
  12. 12.
    Hinderer S, Layland SL, Schenke-Layland K. ECM and ECM-like materials — biomaterials for applications in regenerative medicine and cancer therapy. Adv. Drug Deliv. Rev. 2016;97:260-269.CrossRefGoogle Scholar
  13. 13.
    Imamura Y, Mukohara T, Shimono Y, Funakoshi Y, Chayahara N, Toyoda M, Kiyota N, Takao S, Kono S, Nakatsura T, Minami H. Comparison of 2D- and 3D-culture models as drug-testing platforms in breast cancer. Oncol. Rep. 2015;33(4):1837-1843.CrossRefGoogle Scholar
  14. 14.
    Kwon S, Lee SS, Sivashanmugam A, Kwon J, Kim SHL, Noh MY, Kwon SK, Jayakumar R, Hwang NS. Bioglass-incorporated methacrylated gelatin cryogel for regeneration of bone defects. Polymers (Basel). 2018;10(8). pii: E914. doi:
  15. 15.
    Leddy HA, Awad HA, Guilak F. Molecular diffusion in tissue-engineered cartilage constructs: effects of scaffold material, time, and culture conditions. J. Biomed. Mater. Res. B Appl. Biomater. 2004;70(2):397-406.CrossRefGoogle Scholar
  16. 16.
    Luo LJ, Lai JY, Chou SF, Hsueh YJ, Ma DH. Development of gelatin/ascorbic acid cryogels for potential use in corneal stromal tissue engineering. Acta Biomater. 2018;65:123-136.CrossRefGoogle Scholar
  17. 17.
    Petrenko YA, Ivanov RV, Lozinsky VI, Petrenko AY. Comparison of the methods for seeding human bone marrow mesenchymal stem cells to macroporous alginate cryogel carriers. Bull. Exp. Biol. Med. 2011;150(4):543-546.CrossRefGoogle Scholar
  18. 18.
    Petrenko YA, Petrenko AY, Damshkaln LG, Volkova NA, Lozinsky VI. Growth and adipogenic differentiation of mesenchymal stromal bone marrow cells during culturing in 3D macroporous agarose cryogel sponges. Bull. Exp. Biol. Med. 2008;146(1):129-132.CrossRefGoogle Scholar
  19. 19.
    Roh JD, Nelson GN, Udelsman BV, Brennan MP, Lockhart B, Fong PM, Lopez-Soler RI, Saltzman WM, Breuer CK. Centrifugal seeding increases seeding efficiency and cellular distribution of bone marrow stromal cells in porous biodegradable scaffolds. Tissue Eng. 2007;13(11):2743-2749.CrossRefGoogle Scholar
  20. 20.
    Savina IN, Gun’Ko VM, Phillips GJ, Mikhalovsky SV, Turov VV, Dainiak M, Galaev IY. Porous structure and water state in cross-linked polymer and protein cryo-hydrogels. Soft Matter. 2011;7(9):4276-4283.CrossRefGoogle Scholar
  21. 21.
    Sieh S, Lubik AA, Clements JA, Nelson CC, Hutmacher DW. Interactions between human osteoblasts and prostate cancer cells in a novel 3D in vitro model. Organogenesis. 2010;6(3):181-188.CrossRefGoogle Scholar
  22. 22.
    Szot CS, Buchanan CF, Freeman JW, Rylander MN. 3D in vitro bioengineered tumors based on collagen I hydrogels. Biomaterials. 2011;32(31):7905-7912.CrossRefGoogle Scholar
  23. 23.
    Tam RY, Fisher SA, Baker AEG, Shoichet MS. Transparent porous polysaccharide cryogels provide biochemically defined, biomimetic matrices for tunable 3D cell culture. Chem. Mater. 2016;28(11):3762-3770.CrossRefGoogle Scholar
  24. 24.
    Taubenberger AV, Bray LJ, Haller B, Shaposhnykov A, Binner M, Freudenberg U, Guck J, Werner C. 3D extracellular matrix interactions modulate tumour cell growth, invasion and angiogenesis in engineered tumour microenvironments. Acta Biomater. 2016;36):73-85.CrossRefGoogle Scholar
  25. 25.
    Wu Y, Puperi DS, Grande-Allen KJ, West JL. Ascorbic acid promotes extracellular matrix deposition while preserving valve interstitial cell quiescence within 3D hydrogel scaffolds. J. Tissue Eng. Regen. Med. 2017;11(7):1963-1973.CrossRefGoogle Scholar
  26. 26.
    Yang Z, Zhao X. A 3D model of ovarian cancer cell lines on peptide nanofiber scaffold to explore the cell-scaffold interaction and chemotherapeutic resistance of anticancer drugs. Int. J. Nanomedicine. 2011;6:303-310.CrossRefGoogle Scholar
  27. 27.
    You F, Wu X, Zhu N, Lei M, Eames B. F, Chen X. 3D printing of porous cell-laden hydrogel constructs for potential applications in cartilage tissue engineering. ACS Biomater. Sci. Eng. 2016;2(7):1200-1210.CrossRefGoogle Scholar
  28. 28.
    Zhang X, Fournier MV, Ware JL, Bissell MJ, Yacoub A, Zehner ZE. Inhibition of vimentin or beta1 integrin reverts morphology of prostate tumor cells grown in laminin-rich extracellular matrix gels and reduces tumor growth in vivo. Mol. Cancer Ther. 2009;8(3):499-508.CrossRefGoogle Scholar
  29. 29.
    Zheng L, Hu X, Huang Y, Xu G, Yang J, Li L. In vivo bioengineered ovarian tumors based on collagen, matrigel, alginate and agarose hydrogels: a comparative study. Biomed. Mater. 2015;10(1). ID 015016. doi:
  30. 30.
    Zhu W, Holmes B, Glazer RI, Zhang LG. 3D printed nanocomposite matrix for the study of breast cancer bone metastasis. Nanomedicine. 2016;12(1):69-79.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • M. H. Zoughaib
    • 1
  • D. T. Luong
    • 1
  • Z. Y. Siraeva
    • 1
  • A. A. Yergeshov
    • 1
  • T. I. Salikhova
    • 1
  • S. V. Kuznetsova
    • 1
  • R. G. Kiyamova
    • 1
  • T. I. Abdullin
    • 1
    Email author
  1. 1.Kazan (Volga region) Federal UniversityKazanRussia

Personalised recommendations