Advertisement

Creation of a Model of Co-Culturing of Sertoli-Like Mouse Cells with Spermatogonial Cells

  • E. A. Malolina
  • A. Yu. KulibinEmail author
Article
  • 17 Downloads

Sertoli-like cells is a cell population in the testes of adult mice capable of growth in culture and expressing many genes typical of Sertoli cells and supporting the development of germ cells in the gonad. A technique of co-culturing of Sertoli-like cells with spermatogonial cells was proposed that allows maintaining the growth and viability of germ cells and inducing their differentiation. This technique can provide the basis for obtaining fully differentiated germ cells in culture through using Sertoli-like cells as the supporting somatic cells.

Key Words

Sertoli cells spermatogonial cells in vitro spermatogenesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kulibin AYu, Malolina EA. A combination of small molecular inhibitors YAC increases expression levels of DMRT1 in the culture of Sertoli cells from the transitional zone of mouse testis. Geny Kletki. 2018;13(3):75-81. Russian.Google Scholar
  2. 2.
    Malolina EA, Kulibin AY. Rete testis and the adjacent seminiferous tubules during postembryonic development in mice. Rus. J. Devel. Biol. 2017;48(6):385-392.CrossRefGoogle Scholar
  3. 3.
    Falciatori I, Lillard-Wetherell K, Wu Z, Hamra FK, Garbers DL. Deriving mouse spermatogonial stem cell lines. Methods Mol. Biol. 2008;450:181-192.CrossRefGoogle Scholar
  4. 4.
    Kubota H, Avarbock MR, Brinster RL. Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proc. Natl Acad. Sci. USA. 2004;101(47):16,489-16,494.CrossRefGoogle Scholar
  5. 5.
    Kulibin AY, Malolina EA. Only a small population of adult Sertoli cells actively proliferates in culture. Reproduction. 2016;152(4):271-281.CrossRefGoogle Scholar
  6. 6.
    Matson CK, Murphy MW, Sarver AL, Griswold MD, Bardwell VJ, Zarkower D. DMRT1 prevents female reprogramming in the postnatal mammalian testis. Nature. 2011;476:101-104.CrossRefGoogle Scholar
  7. 7.
    Medrano JV, Vilanova-Pérez T, Fornés-Ferrer V, Navarro-Gomezlechon A, Martínez-Triguero ML, García S, Gómez-Chacón J, Povo I, Pellicer A, Andrés MM, Novella-Maestre E. Influence of temperature, serum, and gonadotropin supplementation in short- and long-term organotypic culture of human immature testicular tissue. Fertil. Steril. 2018;110(6):1045-1057.CrossRefGoogle Scholar
  8. 8.
    Meng X, Lindahl M, Hyvönen ME, Parvinen M, de Rooij DG, Hess MW, Raatikainen-Ahokas A, Sainio K, Rauvala H, Lakso M, Pichel JG, Westphal H, Saarma M, Sariola H. Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science. 2000;287:1489-1493.CrossRefGoogle Scholar
  9. 9.
    Muratori M, Baldi E. Effects of FSH on sperm DNA fragmentation: review of clinical studies and possible mechanisms of action. Front. Endocrinol. (Lausanne). 2018;9. ID 734. doi:  https://doi.org/10.3389/fendo.2018.00734
  10. 10.
    Raymond CS, Murphy MW, O’Sullivan MG, Bardwell VJ, Zarkower D. Dmrt1, a gene related to worm and fly sexual regulators, is required for mammalian testis differentiation. Genes Dev. 2000;14(20):2587-2595.CrossRefGoogle Scholar
  11. 11.
    Saitou M, Miyauchi H. Gametogenesis from pluripotent stem cells. Cell Stem Cell. 2016;18(6):721-735.CrossRefGoogle Scholar
  12. 12.
    Sariola H, Immonen T. GDNF maintains mouse spermatogonial stem cells in vivo and in vitro. Methods Mol. Biol. 2008;450:127-135.CrossRefGoogle Scholar
  13. 13.
    Sato T, Katagiri K, Kubota Y, Ogawa T. In vitro sperm production from mouse spermatogonial stem cell lines using an organ culture method. Nat. Protoc. 2013;8(11):2098-2104.CrossRefGoogle Scholar
  14. 14.
    Sofikitis N, Pappas E, Kawatani A, Baltogiannis D, Loutradis D, Kanakas N, Giannakis D, Dimitriadis F, Tsoukanelis K, Georgiou I, Makrydimas G, Mio Y, Tarlatzis V, Melekos M, Miyagawa I. Efforts to create an artificial testis: culture systems of male germ cells under biochemical conditions resembling the seminiferous tubular biochemical environment. Hum. Reprod. Update. 2005;11(3):229-259.CrossRefGoogle Scholar
  15. 15.
    Zarkower D. DMRT genes in vertebrate gametogenesis. Curr. Top Dev. Biol. 2013;102:327-356.CrossRefGoogle Scholar
  16. 16.
    Zhang J, Hatakeyama J, Eto K, Abe S. Reconstruction of a seminiferous tubule-like structure in a 3 dimensional culture system of re-aggregated mouse neonatal testicular cells within a collagen matrix. Gen. Comp. Endocrinol. 2014;205:121-132.CrossRefGoogle Scholar
  17. 17.
    Zhou Q, Wang M, Yuan Y, Wang X, Fu R, Wan H, Xie M, Liu M, Guo X, Zheng Y, Feng G, Shi Q, Zhao X. Y, Sha J, Zhou Q. Complete meiosis from embryonic stem cell-derived germ cells in vitro. Cell Stem Cell. 2016;18(3):330-340.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.N. K. Koltsov Institute of Developmental BiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations