Changes in the Distribution of Cell Contacts and Mitotic Cycle Disturbances in Cells of the Allograft of Rat Embryonic Neocortex

  • E. S. PetrovaEmail author
  • E. A. Kolos

Morphological changes in the allograft of rat anterior cerebral vesicle at the early stages after transplantation into the peripheral nerve of an adult rat were studied by immunohistochemical methods. Immunohistochemical reaction to bromodeoxyuridine showed that the delay of mitotic division in neural stem/progenitor cells in the grafts occurred during S/G2 stage. In transplants of rat embryonic neocortex (E13), changes in the cell cycle of neural stem/progenitor cells in 3 h after transplantation into the nerve correlated with abnormal distribution of adherens junctions and interkinetic nuclear migration.

Key Words

neuronal stem/progenitor cells neural transplantation adherence junction cadherin bromodeoxyuridine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Grigorev IP, Korzhevskii DE. Current Technologies for Fixation of Biological Material for Immunohistochemical Analysis (Review). Sovremen. Tekhnol. Med. 2018;10(2):156-165. Russian.CrossRefGoogle Scholar
  2. 2.
    Loseva EV. Stem cells for correction of neurodegenerative disorders. Neirokomp’yutery: Razrabotka, Primenenir. 2013;(7):32-44. Russian.Google Scholar
  3. 3.
    Petrova ES. Studies of Histogenetic and neurodegenerative processes in the nervous system using Heterotopic neurotransplantation. Neurosci. Behav. Physiol. 2010;40(8):823-832.CrossRefGoogle Scholar
  4. 4.
    Petrova ES, Otellin VA. Study of mitotic activity and degeneration of cells in the dorsolateral wall of the anterior cerebral vesicle in rat embryos on the model of ectopic neurotransplantation. Bull. Exp. Biol. Med. 2006;142(2):270-273.CrossRefGoogle Scholar
  5. 5.
    Calegari F, Huttner WB. An inhibition of cyclin-dependent kinases that lengthens, but does not arrest, neuroepithelial cell cycle induces premature neurogenesis. J. Cell Sci. 2003;116(Pt24):4947-4955.CrossRefGoogle Scholar
  6. 6.
    Hatakeyama J, Wakamatsu Y, Nagafuchi A, Kageyama R, Shigemoto R, Shimamura K. Cadherin-based adhesions in the apical endfoot are required for active Notch signaling to control neurogenesis in vertebrates. Development. 2014;141(8):1671-1682.CrossRefGoogle Scholar
  7. 7.
    Petrova ES. Astrogliogenesis in heterotopic allotransplants of rat embryonic neocortex. Bull. Exp. Biol. Med. 2012; 152(4):504-508.CrossRefGoogle Scholar
  8. 8.
    Pilaz LJ, Patti D, Marcy G, Ollier E, Pfister S, Douglas RJ, Betizeau M, Gautier E, Cortay V, Doerflinger N, Kennedy H, Dehay C. Forced G1-phase reduction alters mode of division, neuron number, and laminar phenotype in the cerebral cortex. Proc. Natl Acad. Sci. USA. 2009;106(51):21 924-21 929.CrossRefGoogle Scholar
  9. 9.
    Schmid MT, Weinandy F, Wilsch-Bräuninger M, Huttner WB, Cappello S, Götz M. The role of α-E-catenin in cerebral cortex development: radial glia specific effect on neuronal migration. Front. Cell. Neurosci. 2014;8. ID 215. doi:
  10. 10.
    Smirnov EB, Bystròn IP, Puchkov VF, Otellin VA. Mitotic activity and rosette formation in the neuroepithelium of the human embryo neocortex in vitro. Neurosci. Behav. Physiol. 1998.Vol. 28(5):473-477.CrossRefGoogle Scholar
  11. 11.
    Spear PC, Erickson CA. Interkinetic nuclear migration: a mysterious process in search of a function. Dev. Growth Differ. 2012;54(3):306-316.CrossRefGoogle Scholar
  12. 12.
    Strzyz PJ, Lee HO, Sidhaye J, Weber IP, Leung LC, Norden C. Interkinetic nuclear migration is centrosome independent and ensures apical cell division to maintain tissue integrity. Dev. Cell. 2015;32(2):203-219.CrossRefGoogle Scholar
  13. 13.
    Sukhinich KK, Kosykh AV, Aleksandrova MA. Differentiation and cell-cell interactions of neural progenitor cells transplanted into intact adult brain. Bull. Exp. Biol. Med. 2015;160(1):115-122.CrossRefGoogle Scholar
  14. 14.
    Sukhinich KK, Podgornyĭ OV, Aleksandrova MA. Immunohistochemical analysis of development of suspension and tissue neurotransplants. Izv. Akad. Nauk Ser. Biol. 2011;(6): 659-669.Google Scholar
  15. 15.
    Willardsen MI, Link BA. Cell biological regulation of division fate in vertebrate neuroepithelial cells. Dev. Dyn. 2011;240(8):1865-1879.CrossRefGoogle Scholar
  16. 16.
    Zhuravleva ZN, Hutsyan SS, Zhuravlev GI. Phenotypic differentiation of neurons in intraocular transplants. Ontogenez. 2016;47(3):181-188.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Functional Morphology of the Central and Peripheral Nervous System, Department of General and Special MorphologyInstitute of Experimental MedicineSt. PetersburgRussia

Personalised recommendations