Comparison of the Efficiency of Transplantation of Rat and Human Olfactory Ensheathing Cells in Posttraumatic Cysts of the Spinal Cord

  • А. D. VoronovaEmail author
  • O. V. Stepanova
  • M. P. Valikhov
  • A. V. Chadin
  • А. S. Semkina
  • M. A. Abakumov
  • I. V. Reshetov
  • V. P. Chekhonin
Cell Technologies in Biology and Medicine

Olfactory ensheathing cells showed significant effects on the regeneration of the spinal cord in experimental models and in clinical trials. However, the use of these cells in the therapy of posttraumatic cysts of the spinal cord has not been studied. Cultures of human and rat olfactory mucosa were obtained according to the protocols developed by us. Passage 3-4 cultures are most enriched with olfactory ensheathing cells and are preferable for transplantation. We performed transplantation of 750,000 olfactory ensheathing cells into the region of modeled cysts. The therapeutic effect of human cells was more pronounced. The positive dynamics of recovery of motor activity in the hind limbs of rats can reflect regenerative processes in the spinal cord after transplantation of olfactory ensheathing cells into the region of posttraumatic cysts.

Key Words

olfactory ensheathing cells olfactory mucosa cell therapy cysts of spinal cord spinal cord injury 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Voronova АD, Stepanova OV, Valikhov MP, Chadin AV, Dvornikov АS, Reshetov IV, Chekhonin VP. Preparation of Human Olfactory Ensheathing Cells for the Therapy of Spinal Cord Injuries. Bull. Exp. Biol. Med. 2018;164(4):523-527.CrossRefGoogle Scholar
  2. 2.
    Dedov II, Tyul’pakov AN, Chekhonin VP, Baklaushev VP, Archakov AI, Moshkovskii SA. Personalized medicine: Stateof-the-art and prospects. Vestn. Ross. Akad. med. Nauk. 2012;67(12):4-12. Russian.CrossRefGoogle Scholar
  3. 3.
    Stepanova OV, Voronova АD, Chadin AV, Valikhov MP, Abakumov MA, Reshetov IV, Chekhonin VP. Isolation of Rat Olfactory Ensheathing Cells and Their Use in the Therapy of Posttraumatic Cysts of the Spinal Cord. Bull. Exp. Biol. Med. 2018;165(1):132-135.CrossRefGoogle Scholar
  4. 4.
    Basso DM, Beattie MS, Bresnahan JC. A sensitive and reliable locomotor rating scale for open field testing in rats. J. Neurotrauma. 1995;12(1):1-21.CrossRefGoogle Scholar
  5. 5.
    Bonfield CM, Levi AD, Arnold PM, Okonkwo DO. Surgical management of post-traumatic syringomyelia. Spine (Phila Pa 1976). 2010;35(21, Suppl):S245-S258.CrossRefGoogle Scholar
  6. 6.
    Cooper DK, Bottino R. Recent advances in understanding xenotransplantation: implications for the clinic. Exp. Rev. Clin. Immunol. 2015;11(12):1379-1390.CrossRefGoogle Scholar
  7. 7.
    Hodgetts SI, Simmons PJ, Plant GW. Human mesenchymal precursor cells (Stro-1+) from spinal cord injury patients improve functional recovery and tissue sparing in an acute spinal cord injury rat model. Cell Transplant. 2013;22(3):393-412.CrossRefGoogle Scholar
  8. 8.
    Hodgetts SI, Simmons PJ, Plant GW. A comparison of the behavioral and anatomical outcomes in sub-acute and chronic spinal cord injury models following treatment with human mesenchymal precursor cell transplantation and recombinant decorin. Exp. Neurol. 2013;248:343-359.CrossRefGoogle Scholar
  9. 9.
    Kocsis JD, Lankford KL, Sasaki M, Radtke C. Unique in vivo properties of olfactory ensheathing cells that may contribute to neural repair and protection following spinal cord injury. Neurosci. Lett. 2009;456(3):137-142.CrossRefGoogle Scholar
  10. 10.
    Kato T, Honmou O, Uede T, Hashi K, Kocsis JD. Transplantation of human olfactory ensheathing cells elicits remyelination of demyelinated rat spinal cord. Glia. 2000;30(3):209-218.CrossRefGoogle Scholar
  11. 11.
    Li J, Lepski G. Cell transplantation for spinal cord injury: a systematic review. Biomed. Res. Int. 2013;2013. ID 786475. doi:
  12. 12.
    Lu J, Féron F, Mackay-Sim A, Waite PM. Olfactory ensheathing cells promote locomotor recovery after delayed transplantation into transected spinal cord. Brain. 2002;125(Pt 1):14-21.CrossRefGoogle Scholar
  13. 13.
    Schaan M, Jaksche H. Comparison of different operative modalities in post-traumatic syringomyelia: preliminary report. Eur. Spine J. 2001;10(2):135-140.CrossRefGoogle Scholar
  14. 14.
    Seki T, Fehlings MG. Mechanistic insights into posttraumatic syringomyelia based on a novel in vivo animal model. Laboratory investigation. J. Neurosurg. Spine. 2008;8(4):365-375.CrossRefGoogle Scholar
  15. 15.
    Squier MV, Lehr RP. Post-traumatic syringomyelia. J. Neurol. Neurosurg. Psychiatry. 1994;57(9):1095-1098.CrossRefGoogle Scholar
  16. 16.
    Tabakow P, Jarmundowicz W, Czapiga B, Fortuna W, Miedzybrodzki R, Czyz M, Huber J, Szarek D, Okurowski S, Szewczyk P, Gorski A, Raisman G. Transplantation of autologous olfactory ensheathing cells in complete human spinal cord injury. Cell Transplant. 2013;22(9):1591-1612.CrossRefGoogle Scholar
  17. 17.
    Yeo J, Cheng S, Hemley S, Lee BB, Stoodley M, Bilston L. Characteristics of CSF velocity-time profile in posttraumatic syringomyelia. Am. J. Neuroradiol. 2017;38(9):1839-1844.CrossRefGoogle Scholar
  18. 18.
    Zadroga A, Jezierska-Woźniak K, Czarzasta J, Barczewska M, Wojtkiewicz J, Maksymowicz W. Therapeutic potential of olfactory ensheathing cells and mesenchymal stem cells in spinal cord injurie. Stem Cells Int. 2017;2017. ID 3978595. doi:
  19. 19.
    Zhang C, Morozova AY, Abakumov MA, Gubsky IL, Douglas P, Feng S, Bryukhovetskiy AS, Chekhonin VP. Precise delivery into chronic spinal cord injury syringomyelic cysts with magnetic nanoparticles MRI visualization. Med. Sci. Monit. 2015;21:3179-3185.CrossRefGoogle Scholar
  20. 20.
    Zhang SX, Huang F, Gates M, White J, Holmberg EG. Histological repair of damaged spinal cord tissue from chronic contusion injury of rat: a LM observation. Histol. Histopathol. 2011;26(1):45-58.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • А. D. Voronova
    • 1
    • 2
    Email author
  • O. V. Stepanova
    • 1
  • M. P. Valikhov
    • 1
  • A. V. Chadin
    • 1
  • А. S. Semkina
    • 2
  • M. A. Abakumov
    • 2
  • I. V. Reshetov
    • 3
  • V. P. Chekhonin
    • 1
    • 2
  1. 1.Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center for Psychiatry and Narcology, Ministry of Health of the Russian FederationMoscowRussia
  2. 2.Department of Medical Nanobiotechnologies, Medical and Biological Faculty, N. I. Pirogov National Research Medical University, Ministry of Health of the Russian FederationMoscowRussia
  3. 3.University Hospital No. 1, I. M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian FederationMoscowRussia

Personalised recommendations