Morphometry of Sperm Head in Rats Treated with an Antifungal Medication

  • N. V. Zaitseva
  • M. A. ZemlyanovaEmail author
  • Yu. V. Kol’dibekova
  • A. M. Ignatova
  • I. V. Mashevskaya

The parameters of sperm head in Wistar male rats orally treated with antifungal agent for 48 days during spermatogenesis were studied by the method of image analysis. The degree of roundness (roughness) of sperm head was calculated. Significant differences in morphometric parameters of sperm head, such as length, width, head angle, and roundness were revealed between the treatment and control group. The index of deformation of sperm head in the treatment group rats was 4.93 arb. units. These data indicated microcephaly accompanied by the enlargement of the head, transition of an acute angle to a right angle, and acquiring of a round form. Potential gonadotoxicity was confirmed by the analysis of the functional activity of spermatozoids of male rats (increased count of spermatozoa with head pathology), fertilization ability (enhanced fertility index), and genotoxicity (increased number of chromosomal aberrations polychromatophilic erythrocytes of murine bone marrow). These changes can be responsible for reduced fertility.

Key Words

sperm method of image analysis antifungal agent gonadotoxicity genotoxicity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Durnev AD, Revazova YuA, Vesrtakova OL. Methodic Recommendations for Evaluation of Mutagenic Properties of Pharmacological Substances. Manual on Experimental (Preclinical) Study of New Pharmacological Substances, Khabriev RU, ed. Moscow, 2005. P. 100-122. Russian.Google Scholar
  2. 2.
    Durnev AD, Smol’nikova NM, Skosyreva AM, Nemova EP, Solomina AS, Shreder OV, Gus’kova TA, Verstakova OL, Syubaev RD. Methodic Recommendations for Evaluation of Reproductive Toxicity of Pharmacological Substances. Manual for Preclinical Studies of New Pharmacological Substances. Part I, Mironov AN, ed. Moscow, 2012. P. 80-93. Russian.Google Scholar
  3. 3.
    Bonde JP, Flachs EM, Rimborg S, Glazer CH, Giwercman A, Ramlau-Hansen CH, Hougaard KS, Høyer BB, Hærvig KK, Petersen SB, Rylander L, Specht IO, Toft G, Bräuner EV. The epidemiologic evidence linking prenatal and postnatal exposure to endocrine disrupting chemicals with male reproductive disorders: a systematic review and meta-analysis. Hum. Reprod. Update. 2016;23(1):104-125.Google Scholar
  4. 4.
    Demir A, Türker P, Onol FF, Sirvanci S, Findik A, Tarcan T. Effect of experimentally induced Escherichia coli epididymo;orchitis and ciprofloxacin treatment on rat spermatogenesis. Int. J. Urol. 2007;14(3):268-272.Google Scholar
  5. 5.
    Drobnis EZ, Nangia AK. Antimicrobials and male reproduction. Adv. Exp. Med. Biol. 2017;1034:131-161.Google Scholar
  6. 6.
    Elzeinová F, Pěknicová J, Děd L, Kubátová A, Margaryan H, Dorosh A, Makovický P, Rajmon R. Adverse effect of tetracycline and doxycycline on testicular tissue and sperm parameters in CD1 outbred mice. Exp. Toxicol. Pathol. 2013;65(6):911-917.CrossRefGoogle Scholar
  7. 7.
    Gandini L, Lombardo F, Paoli D, Caponecchia L, Familiari G, Verlengia C, Dondero F, Lenzi A. Study of apoptotic DNA fragmentation in human spermatozoa. Hum. Reprod. 2000;15(4):830-839.CrossRefGoogle Scholar
  8. 8.
    Lee JD, Kamiguchi Y, Yanagimachi R. Analysis of chromosome constitution of human spermatozoa with normal and aberrant head morphologies after injection into mouse oocytes. Hum. Reprod. 1996;11(9):1942-1946.CrossRefGoogle Scholar
  9. 9.
    Martin RH, Rademaker AW, Greene C, Ko E, Hoang T, Barclay L, Chernos J. A comparison of the frequency of sperm chromosome abnormalities in men with mild, moderate, and severe oligozoospermia. Biol. Reprod. 2003;69(2):535-539.CrossRefGoogle Scholar
  10. 10.
    Mortimer S, Van der Horst G, Mortimer D. The Future of Computer-Aided Sperm Analysis (CASA). Asian J Androl. 2015;17(4):545-553.Google Scholar
  11. 11.
    Oyeyipo IP, Maartens PJ, du Plessis SS. Diet-induced obesity alters kinematics of rat spermatozoa. Asian Pacific. J. Reprod. 2015;4(3):235-239. doi: Scholar
  12. 12.
    Suarez SS. Control of hyperactivation in sperm. Hum. Reprod Update. 2008;14(6):647-657.CrossRefGoogle Scholar
  13. 13.
    van der Horst G, Skosana B, Legendre A, Oyeyipo P, du Plessis SS. Cut-off values for normal sperm morphology and toxicology for automated analysis of rat sperm morphology and morphometry. Biotech. Histochem. 2018;93(1):49-58.Google Scholar
  14. 14.
    Varea Sánchez M, Bastir M, Roldan ER. Geometric morphometrics of rodent sperm head shape. PLoS One. 2013;8(11). ID e80607. doi: 10.1371/journal.pone.0080607.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • N. V. Zaitseva
    • 1
  • M. A. Zemlyanova
    • 1
    • 2
    Email author
  • Yu. V. Kol’dibekova
    • 1
  • A. M. Ignatova
    • 1
  • I. V. Mashevskaya
    • 3
  1. 1.Federal Scientific Center for Medical and Preventive Health Risk Management TechnologiesPermRussia
  2. 2.Perm’ State National Polytechnic UniversityPermRussia
  3. 3.Perm’ State National Research UniversityPermRussia

Personalised recommendations