Advertisement

H2S-Mediated Changes in Erythrocyte Volume: Role of Gardos Channels, Na+,K+,2Cl Cotransport and Anion Exchanger

  • Yu. G. BirulinaEmail author
  • I. V. Petrova
  • Yu. A. Rozenbaum
  • E. A. Shefer
  • L. V. Smagliy
  • A. V. Nosarev
  • S. V. Gusakova
Article
  • 2 Downloads

The effect of H2S on changes in erythrocyte volume was studied by spectrophotometrical and potentiometric methods. It was found that H2S donor NaHS (2.5, 10, and 100 μM) induced an increase in erythrocyte volume in heterosmotic media. Activation of Gardos channels with A23187 or ascorbate—phenazine methosulfate system causes erythrocyte shrinkage and hyperpolarization of their membrane, while addition of NaHS restored erythrocyte volume. The decrease in erythrocyte volume upon blockade of Na+,K+,2Cl cotransporter (bumetanide) or anion exchanger (SITS) was abolished by H2S donor NaHS, which attested to an important role of these transporters and chlorine conductivity of the membrane in the maintenance of the homeostasis of blood cells.

Key Words

hydrogen sulfide erythrocytes ion-transporting systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gabitova DM, Shaidullov IF, Sabirullina GI, Shafigullin MU, Sitdikov FG, Sitdikova GF. Role of Cyclic Nucleotides in the Effect of Hydrogen Sulfide on Contractions of Rat Jejunum. Bull. Exp. Biol. Med. 2017;163(1):14-17.CrossRefGoogle Scholar
  2. 2.
    Gusakova SV, Kovalev IV, Birulina YG, Smagliy LV, Petrova IV, Nosarev AV, Orlov SN, Aleinyk AN. The effects of carbon monoxide and hydrogen sulfide on transmembrane ion transport. Biophysics. 2017;62(2):220-226.CrossRefGoogle Scholar
  3. 3.
    Petrova IV, Trubacheva OA, Mangataeva OS, Suslova TE, Kovalev IV, Gusakova SV. The influence of hydrogen sulfide on collagen-induced aggregation of human platelets. Ross. Fiziol. Zh. 2015;101(10):1191-1201. Russian.Google Scholar
  4. 4.
    Andolfo I, Russo R, Gambale A, Iolascon A. New insights on hereditary erythrocyte membrane defects. Haematologica. 2016;101(11):1284-1294.CrossRefGoogle Scholar
  5. 5.
    Bonar PT, Casey JR. Plasma membrane Cl/HCO3 exchangers: structure, mechanism and physiology. Channels. 2008;2(5):337-345.CrossRefGoogle Scholar
  6. 6.
    Kabil O, Banerjee R. Enzymology of H2S biogenesis, decay and signaling. Antioxid. Redox Signal. 2014;20(5):770-782.CrossRefGoogle Scholar
  7. 7.
    Lang F. Mechanisms and significance of cell volume regulation. J. Am. Coll. Nutr. 2007;26(5 Suppl):613S-623S.CrossRefGoogle Scholar
  8. 8.
    Maher AD, Kuchel PW. The Gаrdos channel: a review of the Ca2+-activated K+ channel in human erythrocytes. Int. J. Biochem. Cell Biol. 2003;35(8):1182-1197.CrossRefGoogle Scholar
  9. 9.
    Polhemus DJ, Lefer DJ. Emergence of hydrogen sulfide as an endogenous gaseous signaling molecule in cardiovascular disease. Circ. Res. 2014;114(4):730-737.CrossRefGoogle Scholar
  10. 10.
    Sprague RS, Stephenson AH, Ellsworth ML. Red not dead: signaling in and from erythrocytes. Trends Endocrinol. Metab. 2007;18:350-355.CrossRefGoogle Scholar
  11. 11.
    Srinivas SP, Bonanno JA, Larivière E, Jans D, Van Driessche W. Measurement of rapid changes in cell volume by forward light scattering. Pflugers Arch. 2003;447(1):97-108.CrossRefGoogle Scholar
  12. 12.
    Zhang W, Xu C, Yang G, Wu L, Wang R. Interaction of H2S with calcium permeable channels and transporters. Oxid. Med. Cell. Longev. 2015;2015. ID 323269. doi:  https://doi.org/10.1155/2015/323269.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yu. G. Birulina
    • 1
    Email author
  • I. V. Petrova
    • 1
  • Yu. A. Rozenbaum
    • 1
  • E. A. Shefer
    • 1
  • L. V. Smagliy
    • 1
  • A. V. Nosarev
    • 1
  • S. V. Gusakova
    • 1
  1. 1.Siberian State Medical UniversityMinistry of Health of the Russian FederationTomskRussia

Personalised recommendations