Advertisement

Association of DNMT3B and DNMN3L Gene Polymorphisms with Early Pregnancy Loss

  • M. M. AzovaEmail author
  • A. A. Ahmed
  • A. Ait Aissa
  • M. L. Blagonravov
GENETICS
  • 9 Downloads

A total of 100 women with early pregnancy loss were recruited and further classified into two subgroups: sporadic pregnancy loss and recurrent pregnancy loss; each subgroup consisted of 50 women. The control group included 56 women with normal pregnancies. Genotyping was performed by PCR with restriction fragment length polymorphism analysis. A statistically significant increase in the frequencies of TT genotype and T allele for DNMT3B rs2424913 polymorphism was found in the total patient group and in both patient subgroups in comparison with the control. Moreover, homozygous TT genotype was associated with increased risk of early pregnancy loss (both sporadic and recurrent). DNMT3B rs2424913 gene polymorphism in women can be used a marker of predisposition to early pregnancy loss and recurrent pregnancy loss.

Key Words

DNA methyltransferases early pregnancy loss single nucleotide polymorphisms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barišić A, Pereza N, Hodžić A, Ostojić S, Peterlin B. A Single nucleotide polymorphism of DNA methyltransferase 3B gene is a risk factor for recurrent spontaneous abortion. Am. J. Reprod. Immunol. 2017;78(6). doi:  https://doi.org/10.1111/aji.12765.
  2. 2.
    Borghese B, Santulli P, Héquet D, Pierre G, de Ziegler D, Vaiman D, Chapron C. Genetic polymorphisms of DNMT3L involved in hypermethylation of chromosomal ends are associated with greater risk of developing ovarian endometriosis. Am. J. Pathol. 2012;180(5):1781-1786.CrossRefGoogle Scholar
  3. 3.
    Božović IB, Stanković A, Živković M, Vraneković J, Kapović M, Brajenović-Milić B. Altered LINE-1 methylation in mothers of children with Down syndrome. PLoS One. 2015;10(5). ID e0127423. doi:  https://doi.org/10.1371/journal.pone.0127423.
  4. 4.
    Committee on Practice Bulletins — Gynecology. The American College of Obstetricians and Gynecologists Practice Bulletin no. 150. Early pregnancy loss. Obstet Gynecol. 2015;125(5): 1258-1267.CrossRefGoogle Scholar
  5. 5.
    El Hachem H, Crepaux V, May-Panloup P, Descamps P, Legendre G, Bouet PE. Recurrent pregnancy loss: current perspective. Int. J. Womens Health. 2017;9:331-345.CrossRefGoogle Scholar
  6. 6.
    European Society of Human Reproduction and Embryology. Guideline on the management of recurrent pregnancy loss. URL: https://www.eshre.eu/Guidelines-and-Legal/Guidelines/Recurrent-pregnancy-loss
  7. 7.
    Gao M, He D, Meng F, Li J, Shen Y. Associations of DNMT3B -149C>T and -2437T>A polymorphisms and lung cancer risk in Chinese population. World J. Surg. Oncol. 2016;14(1). ID 293.Google Scholar
  8. 8.
    Huang JX, Scott MB, Pu XY, Zhou-Cun A. Association between single-nucleotide polymorphisms of DNMT3L and infertility with azoospermia in Chinese men. Reprod. Biomed. Online. 2012;24(1):66-71.CrossRefGoogle Scholar
  9. 9.
    Jeve YB, Davies W. Evidence-based management of recurrent miscarriages. J. Hum. Reprod. Sci. 2014;7(3):159-169.CrossRefGoogle Scholar
  10. 10.
    Kim SY, Romero R, Tarca AL, Bhatti G, Kim CJ, Lee J, Elsey A, Than NG, Chaiworapongsa T, Hassan SS, Kang GH, Kim JS. Methylome of fetal and maternal monocytes and macrophages at the feto-maternal interface. Am. Reprod. Immunol. 2012;68(1):8-27.CrossRefGoogle Scholar
  11. 11.
    Lyko F. The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nat. Rev. Genet. 2018;19(2):81-92.CrossRefGoogle Scholar
  12. 12.
    Petrussa L, Van de Velde H, De Rycke M. Dynamic regulation of DNA methyltransferases in human oocytes and preimplantation embryos after assisted reproductive technologies. Mol. Hum. Reprod. 2014;20(9):861-874.CrossRefGoogle Scholar
  13. 13.
    Shen H, Wang L, Spitz MR, Hong WK, Mao L, Wei Q. A novel polymorphism in human cytosine DNA-methyltransferase-3B promoter is associated with an increased risk of lung cancer. Cancer Res. 2002;62(17):4992-4995.Google Scholar
  14. 14.
    Suetake I, Shinozaki F, Miyagawa J, Takeshima H, Tajima S. DNMT3L stimulates the DNA methylation activity of Dnmt3a and DNMT3B through a direct interaction. J. Biol. Chem. 2004;279(26):27,816-27,823.CrossRefGoogle Scholar
  15. 15.
    Tajima S, Suetake I, Takeshita K, Nakagawa A, Kimura H. Domain structure of the Dnmt1, Dnmt3a, and DNMT3B DNA methyltransferases. Adv. Exp. Med. Biol. 2016;945:63-86.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • M. M. Azova
    • 1
    Email author
  • A. A. Ahmed
    • 1
  • A. Ait Aissa
    • 1
  • M. L. Blagonravov
    • 2
  1. 1.Department of Biology and General GeneticsMoscowRussia
  2. 2.V. A. Frolov Department of General Pathology and Pathophysiology, Medical InstitutePeoples’ Friendship University of Russia (RUDN University)MoscowRussia

Personalised recommendations