Advertisement

Neuroprotective Effects of Methylene Blue In Vivo and In Vitro

  • E. V. Stelmashook
  • E. E. Genrikhs
  • E. V. Mukhaleva
  • M. R. Kapkaeva
  • R. V. Kondratenko
  • V. G. Skrebitsky
  • N. K. IsaevEmail author
PHARMACOLOGY AND TOXICOLOGY
  • 7 Downloads

Focal unilateral traumatic brain injury in the sensorimotor cortical region disturbed the functions of contralateral limbs controlled by the damaged hemisphere. A single intravenous injection of methylene blue (1 mg/kg) immediately before or 30 min after the injury significantly weakened functional disorders in the affected extremities. In vitro experiments showed that methylene blue effectively reduced death of cultured neurons provoked by paraquat or zinc ions producing the toxic effects on mitochondrias.

Key Words

traumatic brain injury methylene blue neurons paraquat zinc ions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Genrikhs EE, Voronkov DN, Kapkaeva MR, Isaev NK, Stelmashook EV. Focal Unilateral Traumatic brain injury Causes Delayed Neurodegenerative Changes in the Brain of Rats. Bull. Exp. Biol. Med. 2017;164(2):211-213.CrossRefGoogle Scholar
  2. 2.
    Isaev NK, Plotnikov EYu, Kuvshinova EA, Zorov DB, Stelmashook EV, Dirnagl U. Mitochondrial free radical production induced by glucose deprivation in cerebellar granule neurons. Biochemistry (Moscow). 2008;73(2):149-155.CrossRefGoogle Scholar
  3. 3.
    Fenn AM, Skendelas JP, Moussa DN, Muccigrosso MM, Popovich PG, Lifshitz J, Eiferman DS, Godbout JP. Methylene blue attenuates traumatic brain injury-associated neuroinflammation and acute depressive-like behavior in mice. J. Neurotrauma. 2015;32(2):127-138.CrossRefGoogle Scholar
  4. 4.
    Fukushima T, Yamada K, Isobe A, Shiwaku K, Yamane Y. Mechanism of cytotoxicity of paraquat. I. NADH oxidation and paraquat radical formation via complex I. Exp. Toxicol. Pathol. 1993;45(5-6):345-349.Google Scholar
  5. 5.
    Hiebert JB, Shen Q, Thimmesch AR, Pierce JD. Traumatic brain injury and mitochondrial dysfunction. Am. J. Med. Sci. 2015;350(2):132-138.CrossRefGoogle Scholar
  6. 6.
    Kilbaugh TJ, Karlsson M, Byro M, Bebee A, Ralston J, Sullivan S, Duhaime AC, Hansson MJ, Elmér E, Margulies SS. Mitochondrial bioenergetic alterations after focal traumatic brain injury in the immature brain. Exp. Neurol. 2015;271:136-144.CrossRefGoogle Scholar
  7. 7.
    Oz M, Lorke DE, Petroianu GA. Methylene blue and Alzheimer’s disease. Biochem. Pharmacol. 2009;78(8):927-932.CrossRefGoogle Scholar
  8. 8.
    Poteet E, Winters A, Yan LJ, Shufelt K, Green KN, Simpkins JW, Wen Y, Yang SH. Neuroprotective actions of methylene blue and its derivatives. PLoS One. 2012;7(10):e48279. doi:  https://doi.org/10.1371/journal.pone.0048279.CrossRefGoogle Scholar
  9. 9.
    Rojas JC, Bruchey AK, Gonzalez-Lima F. Neurometabolic mechanisms for memory enhancement and neuroprotection of methylene blue. Prog. Neurobiol. 2012;96(1):32-45.CrossRefGoogle Scholar
  10. 10.
    Sharpley MS, Hirst J. The inhibition of mitochondrial complex I (NADH:ubiquinone oxidoreductase) by Zn2+. J. Biol. Chem. 2006;281(46):34 803-34809.CrossRefGoogle Scholar
  11. 11.
    Suh SW, Chen JW, Motamedi M, Bell B, Listiak K, Pons NF, Danscher G, Frederickson CJ. Evidence that synapticallyreleased zinc contributes to neuronal injury after traumatic brain injury. Brain Res. 2000;852(2):268-273.CrossRefGoogle Scholar
  12. 12.
    Wainwright M, Amaral L. The phenothiazinium chromophore and the evolution of antimalarial drugs. Trop. Med. Int. Health. 2005;10(6):501-511.CrossRefGoogle Scholar
  13. 13.
    Watts LT, Lloyd R, Garling RJ, Duong T. Stroke neuroprotection: targeting mitochondria. Brain Sci. 2013;3(2):540-560.CrossRefGoogle Scholar
  14. 14.
    Wiklund L, Sharma A, Sharma HS. Neuroprotection by Methylene Blue in Cerebral Global Ischemic Injury Induced Blood-Brain Barrier Disruption and Brain Pathology: A Review. CNS Neurol. Disord. Drug Targets. 2016;15(9):1181-1187.CrossRefGoogle Scholar
  15. 15.
    Zhao M, Liang F, Xu H, Yan W, Zhang J. Methylene blue exerts a neuroprotective effect against traumatic brain injury by promoting autophagy and inhibiting microglial activation. Mol. Med. Rep. 2016;13(1):13-20.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • E. V. Stelmashook
    • 1
  • E. E. Genrikhs
    • 1
  • E. V. Mukhaleva
    • 1
    • 2
  • M. R. Kapkaeva
    • 1
  • R. V. Kondratenko
    • 1
  • V. G. Skrebitsky
    • 1
  • N. K. Isaev
    • 1
    • 2
    Email author
  1. 1.Research Center of NeurologyMoscowRussia
  2. 2.M. V. Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations