Advertisement

Effect of Non-Thermal Plasma on Proliferative Activity and Adhesion of Multipotent Stromal Cells to Scaffolds Developed for Tissue-Engineered Constructs

  • R. K. ChailakhyanEmail author
  • A. G. Grosheva
  • Yu. V. Gerasimov
  • N. N. Vorob’eva
  • S. A. Ermolaeva
  • E. V. Sysolyatina
  • M. V. Kazakova
  • Yu. S. Akishev
  • A. V. Petryakov
  • K. V. Sidoruk
  • V. F. Burdukovskii
  • P. S. Timashev
Translated from Kletochnye Tekhnologii v Biologii i Meditsine (Cell Technologies in Biology and Medicine)
  • 2 Downloads

We studied the effect of non-thermal argon plasma on proliferative activity of bone marrow multipotent stromal cells in vitro. Treatment of stromal cell suspension with pure argon did not affect their proliferation. The cells treated with non-thermal argon plasma and explanted in the treatment medium demonstrated growth inhibition by 30-40% in comparison with the control. Multipotent stromal cells treated with plasma and after centrifugation explanted in normal medium within 12 min demonstrated accelerated growth. The total cell growth from the pellet and supernatant significantly exceeded the control values. We also analyzed adhesion and proliferative activity of multipotent stromal cells treated with non-thermal plasma on bioresorbable carriers. The cells adhered and proliferated on all types of studied samples. Adhesion properties of scaffolds differed. Caprolactone was found to be the most suitable material for adhesion and proliferation of multipotent stromal cells.

Key Words

multipotent stromal cells proliferative activity adhesion properties nonthermal argon plasma tissue-engineered constructs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andreeva ER, Pogodina MV, Buravkova LB. Hypoxic stress as an activation trigger of multipotent mesenchymal stromal cells. Human Physiol. 2015;41(2):218-222.CrossRefGoogle Scholar
  2. 2.
    Bardakova KN, Grebenik EA, Istranova EV, Istranov LP, Gerasimov YV, Grosheva AG, Zharikova TM, Minaev NV, Shavkuta BS, Dudova DS, Kostyuk SV, Vorob’eva NN, Bagratashvili VN, Timashev PS, Chailakhyan RK. Reinforced Hybrid Collagen Sponges for Tissue Engineering. Bull. Exp. Biol. Med. 2018;165(1):142-147.CrossRefGoogle Scholar
  3. 3.
    Bochkov NP, Nikitina VA. Cytogenetics of human stem cells. Mol. Med. 2008;(3):40-47. Russian.Google Scholar
  4. 4.
    Tambiev AH. Impact of Millimeter Waves on Photosynthetic Organisms Including Photobiotechnological Produsers. Biomed. Tekhnol. Radioelektron. 2007;(2-4):140-156. Russian.Google Scholar
  5. 5.
    Tambiev AKh, Kirikova NN, Betskii OV, Gulyaev YuV. Millimeter wave and photosynthetic organisms. Moscow, 2003. Russian.Google Scholar
  6. 6.
    Tuhvatulin AI, Sysolyatina EV, Scheblyakov DV, Logunov DYu, Vasiliev MM, Yurova MA, Danilova MA, Petrov OF, Naroditsky BS, Morfill GE, Grigoriev AI, Fortov VE, Gintsburg AL, Ermolaeva SA. Non-thermal plasma causes p53-dependent apoptosis in human colon carcinoma cells. Acta Naturae. 2012;4(3):82-87.Google Scholar
  7. 7.
    Chailakhyan RK, Gerasimov YuV. Bone marrow stromal stem cells: Experimental studies and clinical applications. Med. Immunol. 2004;6(3-5):201-205.Google Scholar
  8. 8.
    Chailakhyan RK, Gerasimov YuV, Kuralesova AI, Latsinik NV, Genkina EN, Chailakhyan MR. Proliferative and differentiation potential of individual clones derived from bone marrow stromal precursor cells. Biol. Bull. 2001;28(6):575-584.CrossRefGoogle Scholar
  9. 9.
    Chailahyan RK, Gerasimov JuV, Sviridov AP, Kondjurin AV, Tambiev AH, Bagratishvili VN. Effect of IR Laser Radiation on the Multipotent Mesenchymal Stromal Stem Cells of Rat Marrow In Vivo. Ross. Immunol. Zh. 2009;3(3-4):333-337. Russian.Google Scholar
  10. 10.
    Chailakhyan RK, Shekhter AB, Tel’pukhov VI, Ivannikov SV, Gerasimov YuV, Vorobieva NN, Moskvina IL, Bagratashvili VN. Repair of Partial Thickness Articular Hyaline Cartilage Injuries with Multipotent Mesenchymal Stromal Bone Marrow Cells Transplantation in Rabbits. Vestn. Travmatol. Ortoped. 2015;(1):23-27. Russian.Google Scholar
  11. 11.
    Chailakhyan RK, Yusupov VI, Gerasimov YuV, Sobolev PA, Tambiev AKh, Vorob’eva NN, Sviridov AP, Bagratishvili VN. Influence of hydrodynamic processes and low-intensity radiation with wavelengths of 0.63 μ and 7.1 mm on proliferative activity of bone marrow stromal stem cells in vitro. Biomeditdina. 2011;(2):24-29. Russian.Google Scholar
  12. 12.
    Chailakhyan RK, Gerasimov YuV, Yusupov VI, Sviridov AP, Tambiev AKh, Vorobieva NN, Grosheva AG, Kuralesova AI, Moskvina IL, Bagratashvili VN. Activation of Bone Marrow Multipotent Stromal Cells by Laser and EHF Radiation and Their Combined Impacts. Sovremen. Tekhnol. Med. 2017;9(1):28-37.CrossRefGoogle Scholar
  13. 13.
    Chaĭlakhan RK, Lalykina KS. Spontaneous and induced differentiation of osseous tissue in a population of fibroblast-like cells obtained from long-term monolayer cultures of bone marrow and spleen. Dokl. Akad. Nauk SSSR. 1969;187(2):473-475. Russian.Google Scholar
  14. 14.
    Chudnovskyi V, Bulanov V, Jusypov V. Laser Induction of Acoustic Hydrodynamical Effects in Medicine. Fotonika. 2010;(1):30-36. Russian.Google Scholar
  15. 15.
    Chudnovskii VM, Leonova GN, Skopinov SA, Drozdov AL, Yusupov VI. Biological models and physical mechanisms of laser therapy. Vladivostok, 2002. Russian.Google Scholar
  16. 16.
    Chen SL, Fang WW, Ye F, Liu YH, Qian J, Shan SJ, Zhang JJ, Chunhua RZ, Liao LM, Lin S, Sun JP. Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am. J. Cardiology. 2004;94(1):92-95.CrossRefGoogle Scholar
  17. 17.
    Choi JS, Kim J, Hong YJ, Bae WY, Choi EH, Jeong JW, Park HK. Evaluation of non-thermal plasma-induced anticancer effects on human colon cancer cells. Biomed. Opt. Express. 2017;8(5):2649-2659.CrossRefPubMedCentralGoogle Scholar
  18. 18.
    Durant TJ, Dyment N, McCarthy MB, Cote MP, Arciero RA, Mazzocca AD, Rowe D. Mesenchymal stem cell response to growth factor treatment and low oxygen tension in 3-dimensional construct environment. Muscles Ligaments Tendons J. 2014;4(1):46-51.CrossRefPubMedCentralGoogle Scholar
  19. 19.
    Eduardo Fde P, Bueno DF, de Freitas PM, Marques MM, Passos-Bueno MR, Eduardo Cde P, Zatz M. Stem cell proliferation under low-intensity laser irradiation: a preliminary study. Lasers Surg. Med. 2008;40(6):433-438.CrossRefGoogle Scholar
  20. 20.
    Ermolaeva S, Petrov O, Naroditsky B, Morfill G, Fortov V, Gintsburg A. Cold Plasma Therapy. Comprehensive Biomedical Physics.Vol. 10: Physical Medicine and Rehabilitation. Chapter 10.18. Brahme A, ed. Oxford, 2014. P. 343-367.Google Scholar
  21. 21.
    Haugh MG, Murphy CM, McKiernan RC, Altenbuchner C, O’Brien FJ. Crosslinking and mechanical properties significantly influence cell attachment, proliferation, and migration within collagen glycosaminoglycan scaffolds. Tissue Eng. Part A. 2011;17(9-10):1201-1208.CrossRefGoogle Scholar
  22. 22.
    Lee WY, Lui PP, Rui YF. Hypoxia-mediated efficient expansion of human tendon-de rived stem cells in vitro. Tissue Eng. Part A. 2012;18(5-6):484-498.CrossRefGoogle Scholar
  23. 23.
    Ng TK, Fortino VR, Pelaez D, Cheung HS. Progress of mesenchymal stem cell therapy for neural and retinal diseases.. World J. Stem Cells. 2014;6(2):111-119.Google Scholar
  24. 24.
    Park J, Lee H, Lee HJ, Kim GC, Kim DY, Han S, Song K. Non-thermal atmospheric pressure plasma efficiently promotes the proliferation of adipose tissue-derived stem cells by activating NO-response pathways. Sci. Rep. 2016;6. ID 39298. doi: 10.1038/srep39298.Google Scholar
  25. 25.
    Tuby H, Maltz L, Oron U. Low-level laser irradiation (LLLI) promotes proliferation of mesenchymal and cardiac stem cells in cultur. Lasers Surg. Med. 2007;39(4):373-378.CrossRefGoogle Scholar
  26. 26.
    Wakitani S, Imoto K, Yamamoto T, Saito M, Murata N, Yoneda M. Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthritis Cartilage. 2002;10(3):199-206.CrossRefGoogle Scholar
  27. 27.
    Yim EK, Darling EM, Kulangara K, Guilak F, Leong KW. Nanotopography-induced changes in focal adhesions, cytoskeletal organization, and mechanical properties of human mesenchymal stem cells. Biomaterials. 2010;31(6):1299-1306.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • R. K. Chailakhyan
    • 1
    • 2
    • 4
    Email author
  • A. G. Grosheva
    • 1
  • Yu. V. Gerasimov
    • 1
  • N. N. Vorob’eva
    • 2
  • S. A. Ermolaeva
    • 1
    • 8
  • E. V. Sysolyatina
    • 1
  • M. V. Kazakova
    • 1
  • Yu. S. Akishev
    • 6
  • A. V. Petryakov
    • 6
  • K. V. Sidoruk
    • 3
  • V. F. Burdukovskii
    • 7
  • P. S. Timashev
    • 2
    • 4
    • 5
  1. 1.N. F. Gamaleya National Research Center of Epidemiology and MicrobiologyMinistry of Health of the Russian FederationMoscowRussia
  2. 2.Institute of Photonic Technologies, Federal Research Center for Crystallography and PhotonicsRussian Academy of SciencesMoscowRussia
  3. 3.Laboratory of Protein Engineering, State Research Institute of Genetics and Selection of Industrial MicroorganismsNational Research Center Kurchatov InstituteMoscowRussia
  4. 4.Institute of Regenerative MedicineI. M. Sechenov First Moscow State Medical UniversityMoscowRussia
  5. 5.Department of Polymers and Composite Materials, N. N. Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  6. 6.Troitsk Institute for Innovation and Fusion ResearchTroitskRussia
  7. 7.Baikal Institute of Nature ManagementSiberian Division of the Russian Academy of ScienceUlan-UdeRussia
  8. 8.Moscow Institute of Physics and TechnologyMoscowRussia

Personalised recommendations