Advertisement

Study of the Osteoindictive Properties of Protein-Modified Polylactide Scaffolds

  • Yu. A. NashchekinaEmail author
  • S. A. Alexandrova
  • P. О. Nikonov
  • E. I. Ivankova
  • V. E. Yudin
  • M. I. Blinova
  • N. A. Mikhailova
Translated from Kletochnye Tekhnologii v Biologii i Meditsine (Cell Technologies in Biology and Medicine)
  • 2 Downloads

Bone marrow mesenchymal stromal cells are multipotent and can differentiate into cells of various tissues, which determines their high importance for clinical application. We performed an in vitro study of the osteogenic potential of mesenchymal stromal cells cultured on intact polylactide scaffolds or scaffolds modified with collagen I or fibrin. Scanning electron microscopy showed that the cells formed osteogenic nodules or osteogenic nodules on both intact and fibrin-modified polylactide scaffolds. Spectrophotometric detection of alkaline phosphatase activity on days 7 and 11 showed that mesenchymal stromal cell grown on intact polylactide scaffolds and on scaffolds modified with collagen type I or fibrin more intensively synthesized alkaline phosphatase than in the control (culture plastic). This dependence increases in the presence of osteogenic differentiation factors in the medium. After long-term culturing (4 weeks), the presence of calcium deposits detected by alizarin red staining confirmed the osteoinductive properties of intact and protein-modified polylactide scaffolds. These findings suggest that polylactide scaffolds and collagen I increase the osteogenic differentiation potential of mesenchymal stromal cells.

Key Words

bone marrow mesenchymal stromal cells osteogenic differentiation polylactide films 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bukharova TB, Arutyunyan IV, Shustrov SA, Alekseeva IS, Fedyunina IA, Logovskaya LV, Volkov AV, Rzhaninova AA, Grigor’yan AS, Kulakov AA, Gol’dshtein DV. Tissue engineering construct on the basis of multipotent stromal adipose tissue cells and Osteomatrix for regeneration of the bone tissue. Bull. Exp. Biol. Med. 2011;152(1):153-158.CrossRefGoogle Scholar
  2. 2.
    Logovskaya LV, Bukharova TB, Volkov AV, Vikhrova EB, Makhnach OV, Goldshtein DV. Induction of osteogenic differentiation of multipotent mesenchymal stromal cells from human adipose tissue. Bull. Exp. Biol. Med. 2013;155(1):145-150.CrossRefGoogle Scholar
  3. 3.
    Nashchekina YA, Yudintceva NM, Nikonov PO, Ivanova EA, Smagina LV, Voronkina IV. Effect of Concentration of Collagen Gel on Functional Activity of Bone Marrow Mesenchymal Stromal Cells. Bull. Exp. Biol. Med. 2017;163(1):123-128.CrossRefGoogle Scholar
  4. 4.
    Khominets VV, Mikhailov SV, Shakun DA, Deev RV, Tsupkina NV, Komarov AV, Shumagaziev SE, Naschekina YaA. Results of orthotopic implantation of tissue-engineered bone equivalent on basis of polylactides matrix and multipotent mesenchymal stromal cells. Vestn. Ross. Voenno-Med. Akad. 2016;(3):105-112. Russian.Google Scholar
  5. 5.
    Bornes TD, Adesida AB, Jomha NM. Mesenchymal stem cells in the treatment of traumatic articular cartilage defects: a comprehensive review. Arthritis Res. Ther. 2014;16(5):432.CrossRefGoogle Scholar
  6. 6.
    Buenrostro D, Park SI, Sterling JA. Dissecting the role of bone marrow stromal cells on bone metastases. Biomed. Res. Int. 2014;2014. ID 875305. doi:  https://doi.org/10.1155/2014/875305.
  7. 7.
    Curran J. M, Fawcett S, Hamilton L, Rhodes NP, Rahman CV, Alexander M, Shakesheff K, Hunt JA. The osteogenic response of mesenchymal stem cells to an injectable PLGA bone regeneration system. Biomaterials. 2013;34(37):9352-9364.CrossRefGoogle Scholar
  8. 8.
    Freeman FE, Stevens HY, Owens P, Guldberg RE, McNamara LM. Osteogenic differentiation of mesenchymal stem cells by mimicking the cellular niche of the endochondral template. Tissue Eng. Part A. 2016;22(19-20):1176-1190.CrossRefGoogle Scholar
  9. 9.
    Luo Y, Shen H, Fang Y, Cao Y, Huang J, Zhang M, Dai J, Shi X, Zhang Z. Enhanced proliferation and osteogenic differentiation of mesenchymal stem cells on graphene oxide-incorporated lectrospun poly(lactic-co-glycolic acid) nanofibrous mats. ACS Appl. Mater. Interfaces. 2015;7(11):6331-6339.CrossRefGoogle Scholar
  10. 10.
    Meinig RP. Clinical use of resorbable polymeric membranes in the treatment of bone defects. Orthop. Clin. North Am. 2010;41(1):39-47.CrossRefGoogle Scholar
  11. 11.
    Mizuno M, Kuboki Y. Osteoblast-related gene expression of bone marrow cells during the osteoblastic differentiation induced by type I collagen. J. Biochem. 2001;129(1):133-138.CrossRefGoogle Scholar
  12. 12.
    Olivares-Navarrete R, Hyzy SL, Hutton DL, Erdman CP, Wieland M, Boyan BD, Schwartz Z. Direct and indirect effects of microstructured titanium substrates on the induction of mesenchymal stem cell differentiation towards the osteoblast lineage. Biomaterials. 2010;31(10):2728-2735.CrossRefGoogle Scholar
  13. 13.
    Sonomoto K, Yamaoka K, Kaneko H, Yamagata K, Sakata K, Zhang X, Kondo M, Zenke Y, Sabanai K, Nakayamada S, Sakai A, Tanaka Y. Spontaneous differentiation of human mesenchymal stem cells on poly-lactic-co-glycolic acid nanofiber scaffold. PLoS One. 2016;11(4):e0153231. doi:  https://doi.org/10.1371/journal.pone.0153231.CrossRefGoogle Scholar
  14. 14.
    Yorukoglu AC, Kiter AE, Akkaya S, Satiroglu-Tufan NL, Tufan AC. A concise review on the use of mesenchymal stem cells in cell sheet-based tissue engineering with special emphasis on bone tissue regeneration. Stem Cells Int. 2017;2017. ID 2374161. doi:  https://doi.org/10.1155/2017/2374161.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yu. A. Nashchekina
    • 1
    • 2
    Email author
  • S. A. Alexandrova
    • 1
  • P. О. Nikonov
    • 1
  • E. I. Ivankova
    • 3
    • 4
  • V. E. Yudin
    • 3
    • 4
  • M. I. Blinova
    • 1
  • N. A. Mikhailova
    • 1
  1. 1.Institute of Cytology, Russian Academy of SciencesSt. PetersburgRussia
  2. 2.A. F. Ioffe Physico-Technical Institute, Russian Academy of SciencesSt. PetersburgRussia
  3. 3.Peter the Great St. Petersburg State Polytechnic UniversitySt. PetersburgRussia
  4. 4.Institute of High-Molecular Compounds, Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations