Effect of Endogenous Neuropeptide Cycloprolylglycine on GABAA Receptors in Cerebellar Purkinje Cells

  • I. N. SharonovaEmail author
  • Yu. V. Bukanova
  • T. A. Gudasheva
  • V. G. Skrebitsky

Voltage clamp and concentration-jump methods were employed to examine the effects of endogenous neuropeptide cycloprolylglycine on GABA-activated ionic currents in isolated cerebellar Purkinje cells. In the concentration range of 0.1-10.0 μM, short-term (600 msec) external application of cycloprolylglycine against the background of GABA-evoked current produced no effect on its amplitude. In contrast, application of 1 μM cycloprolylglycine increased current up to 177±15% control level. The development of potentiating effect and return to the control level of ionic current were slow, which was indicative of possible implication of second messenger systems in these processes. Functional augmentation of GABAA receptors under the action of cycloprolylglycine can underlie the established neuroprotective and anxiolytic effects of this endogenous dipeptide.

Key Words

cycloprolylglycine GABAA receptor cerebellum isolated neurons patch clamp 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ashmarin IP, Koroleva SV, Myasoedov NF. Synactones – functionally conjugated complexes of endogenous regulators. Eksp. Klin. Farmakol. 2006;69(5):3-6. Russian.Google Scholar
  2. 2.
    Gudasheva TA. Theoretical grounds and technologies for dipeptide drug development. Russ. Chem. Bull. 2015;64(9):2012-2021.CrossRefGoogle Scholar
  3. 3.
    Gudasheva TA, Vasilevich NI, Zolotov NN, Lezina VP, Rozenberg SG, Kravchenko EV, Ostrovskaya RU, Voronina TA, Rozantsev GG, Skoldinov AP. On the mechanism of nootropic action of topological analogues of piracetam based on proline. Khim.-Farm. Zh. 1991;25(6):12-15. Russian.Google Scholar
  4. 4.
    Gudasheva TA, Koliasnikova KN, Seredenin SB, Grigoriev VV, Zamoyski VL. Neuropeptide cycloprolylglycine is an endogenous positive modulator of AMPA receptors. Doklady Biochem. Biophysics. 2016;471(1):387-389.CrossRefGoogle Scholar
  5. 5.
    Kolyasnikova KN, Gudasheva TA, Nazarova GA, Antipov PI, Nikolaev SV, Antipova TA, Voronina TA, Seredenin SB. Similarity of Cycloprolylglycine to Piracetam in Antihypoxic and Neuroprotective Effects. Eksp. Klin. Farmakol. 2012;75(9):3-6. Russian.Google Scholar
  6. 6.
    Shuvaev AN, Salmin VV, Kuvacheva NV, Pozhilenkova EA, Salmina AB. Current trends in the development of the method of local potential fixation: new opportunities for neuropharmacology and neurobiology. Annaly. Klin. Eksp. Nevrol. 2015;9(4):54-58. Russian.Google Scholar
  7. 7.
    Faden AI, Knoblach SM, Movsesyan VA, Lea PM 4th, Cernak I. Novel neuroprotective tripeptides and dipeptides. Ann. NY Acad. Sci. 2005;1053:472-481.CrossRefGoogle Scholar
  8. 8.
    Ferro JN, de Aquino FL, de Brito RG, dos Santos PL, Quintans J de S, de Souza LC, de Araújo AF, Diaz BL, Lucca-Júnior W, Quintans-Júnior LJ, Barreto E. Cyclo-Gly-Pro, a cyclic dipeptide, attenuates nociceptive behaviour and inflammatory response in mice. Clin. Exp. Pharmacol. Physiol. 2015;42(12):1287-1295.CrossRefGoogle Scholar
  9. 9.
    Guan J, Harris P, Brimble M, Lei Y, Lu J, Yang Y, Gunn AJ. The role for IGF-1-derived small neuropeptides as a therapeutic target for neurological disorders. Expert Opin. Ther. Targets. 2015;19(6):785-793.CrossRefGoogle Scholar
  10. 10.
    Gudasheva TA, Boyko SS, Akparov VKh, Ostrovskaya RU, Skoldinov SP, Rozantsev GG, Voronina TA, Zherdev VP, Seredenin SB. Identification of a novel endogenous memory facilitating cyclic dipeptide cyclo-prolylglycine in rat brain. FEBS Lett. 1996;391(1-2):149-152.CrossRefGoogle Scholar
  11. 11.
    Gudasheva TA, Boyko SS, Ostrovskaya RU, Voronina TA, Akparov VK, Trofimov SS, Rozantsev GG, Skoldinov AP, Zherdev VP, Seredenin SB. The major metabolite of dipeptide piracetam analogue GVS-111 in rat brain and its similarity to endogenous neuropeptide cyclo-L-prolylglycine. Eur. J. Drug Metab. Pharmacokinet. 1997;22(3):245-252.CrossRefGoogle Scholar
  12. 12.
    Gudasheva TA, Ostrovskaya RU, Trofimov SS, Sosoi MYu, Ienkina FV, Burov YuV, Soldinov AP. Peptide analogs of pyracetam as ligands for hypothetical nootropic receptors. Pharm. Chem. J. 1985;19(11):762-769.CrossRefGoogle Scholar
  13. 13.
    Gudasheva TA, Voronina TA, Ostrovskaya RU, Rozantsev GG, Vasilevich NI, Trofimov SS, Kravchenko EV, Skoldinov AP, Seredenin SB. Synthesis and antiamnesic activity of a series of N-acylprolyl-containing dipeptides. Eur. J. Med. Chem. 1996;31(2):151-157.CrossRefGoogle Scholar
  14. 14.
    Nakamura Y, Darnieder LM, Deeb TZ, Moss SJ. Regulation of GABAARs by phosphorylation. Adv. Pharmacol. 2015;72:97-146.CrossRefGoogle Scholar
  15. 15.
    Porcher C, Hatchett C, Longbottom RE, McAinch K, Sihra TS, Moss SJ, Thomson AM, Jovanovic JN. Positive feedback regulation between gamma-aminobutyric acid type A (GABA(A)) receptor signaling and brain-derived neurotrophic factor (BDNF) release in developing neurons. J. Biol. Chem. 2011;286(24):21 667-21 677.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • I. N. Sharonova
    • 1
    Email author
  • Yu. V. Bukanova
    • 1
  • T. A. Gudasheva
    • 2
  • V. G. Skrebitsky
    • 1
  1. 1.Research Center of NeurologyMoscowRussia
  2. 2.V. V. Zakusov Research Institute of PharmacologyMoscowRussia

Personalised recommendations