Advertisement

Bulletin of Experimental Biology and Medicine

, Volume 166, Issue 3, pp 399–403 | Cite as

Dynamics of Interactions between Cerebral Networks Derived from fMRI Data and Motor Rehabilitation during Stokes

  • A. A. SavelovEmail author
  • M. B. Shtark
  • L. I. Kozlova
  • E. G. Verevkin
  • E. D. Petrovskii
  • M. A. Pokrovskii
  • P. D. Rudych
  • G. M. Tsyrkin
Article
  • 16 Downloads

The connections between large neuronal networks were analyzed in 12 patients with ischemic or hemorrhagic strokes and hemiparesis included in the course of the interactive brain stimulation in the area of the primary motor cortex by the analysis of independent components of fMRI. The results obtained in 3 patients are presented. Desynchronization of the visual networks with each other and with the motor networks as well as positive dynamics in Rankin scale and box and blocks test were observed in the patients. These data attest to a decrease in the importance of visual control during movements and probably on partial restoration of prioperception. The important role of interactive brain stimulation and network analysis of fMRI data in neurology are discussed.

Key Words

cerebral networks stroke functional connections hemiparesis disability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Verkhlyutov VM, Sokolov PA, Ushakov VL, Velichkovskii BM. Macroscopic functional networks of human brain during watching and memorization of short videos. Zh. Vyssh. Nervn. Deyat. 2015;65(3):333. Russian.Google Scholar
  2. 2.
    Mashin VV. Strokes: statistics and relevance for our country. Nevrologiya Revmatologiya. Consilium Medicum. 2014; (2):24-25. Russian.Google Scholar
  3. 3.
    Savelov AA, Shtark MB, Mel’nikov ME, Kozlova LI, Bezmaternykh DD, Verevkin EG, Petrovskii ED, Pokrovskii MA, Tsirkin GM, Rudych PD. Prospects of synchronous fMRIEEG recording as the basis for neurofeedback (Exemplified on patient with stroke sequelae), Bull. Exp. Biol. Med. 2019; 166(3): 386-389.Google Scholar
  4. 4.
    Bassett DS, Sporns O. Network Neuroscience. Nat. Neurosci. 2017;20(3):353-364.CrossRefGoogle Scholar
  5. 5.
    Buckner RL, Andrews-Hanna JR, Schacter DL. The brain’s default network anatomy, function, and relevance to disease. Ann. N.Y. Acad. Sci. 2008;1124:1-38.CrossRefGoogle Scholar
  6. 6.
    Grefkes C, Ward NS. Cortical reorganization after stroke. How much and how functional? Neuroscientist. 2014;20(1):56-70.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. A. Savelov
    • 1
    Email author
  • M. B. Shtark
    • 2
    • 3
    • 4
  • L. I. Kozlova
    • 2
    • 3
  • E. G. Verevkin
    • 2
  • E. D. Petrovskii
    • 1
  • M. A. Pokrovskii
    • 1
  • P. D. Rudych
    • 5
  • G. M. Tsyrkin
    • 2
  1. 1.International Tomography CenterSiberian Division of the Russian Academy of SciencesNovosibirskRussia
  2. 2.Research Institute of Molecular Biology and BiophysicsFederal Research Center of Fundamental and Translational MedicineNovosibirskRussia
  3. 3.Novosibirsk National Research State UniversityNovosibirskRussia
  4. 4.Research-and-Development Enterprise KomsibNovosibirskRussia
  5. 5.Institute of Computational TechnologiesSiberian Division of the Russian Academy of SciencesNovosibirskRussia

Personalised recommendations