Advertisement

Visualization and Cytotoxicity of Fluorescence-Labeled Dimeric Magnetite-Gold Nanoparticles Conjugated with Prostate-Specific Membrane Antigen in Mouse Macrophages

  • S. K. Pirutin
  • M. V. Efremova
  • A. I. Yusipovich
  • V. B. Turovetskii
  • G. V. Maksimov
  • A. B. Druzhko
  • A. G. Mazhuga
BIOTECHNOLOGIES
  • 2 Downloads

We demonstrated the possibility of penetration of magnetite-gold nanoparticles conjugated with prostate-specific membrane antigen into mouse macrophages. It was found that after 3-h incubation with nanoparticles in a concentration of 15 mg/liter at 37oC, they were seen in only 13% macrophages. In about 90% cells, the nanoparticles were detected within the cytoplasm. Under these conditions, membrane damage was revealed in 25% cells. These results should be taken into account in further development and application of nanomaterials for diagnostic and therapeutic purposes in oncology.

Key Words

magnetite-gold nanoparticles prostate-specific membrane antigen macrophages cell membranes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bianco A, Kostarelos K, Prato M. Applications of carbon nanotubes in drug delivery. Curr. Opin. Chem. Biol. 2005;9(6):674-679.CrossRefGoogle Scholar
  2. 2.
    Dai X, Tan Y, Xu J. Formation of gold nanoparticles in the presence of o-anisidine and the dependence of the structure of poly(o-anisidine) on synthetic conditions. Langmuir. 2002;18(23):9010-9016.CrossRefGoogle Scholar
  3. 3.
    Das M, Shim KH, An SSA, Yi DK. Review on gold nanoparticles and their applications. Toxicol. Environ. Health Sci. 2011;3(4):193-205.CrossRefGoogle Scholar
  4. 4.
    Halliwell B, Whiteman M. Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br. J. Pharmacol. 2004;142(2):231-255.CrossRefGoogle Scholar
  5. 5.
    Hao R, Xing R, Xu Z, Hou Y, Gao S, Sun S. Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv. Mater. 2010;22(25):2729-2742.CrossRefGoogle Scholar
  6. 6.
    Haume K, Rosa S, Grellet S, Śmiałek MA, Butterworth KT, Solov’yov AV, Prise KM, Golding J, Mason NJ. Gold nanoparticles for cancer radiotherapy: a review. Cancer Nanotechnol. 2016;7(1):8.CrossRefGoogle Scholar
  7. 7.
    Hornos Carneiro MF, Barbosa F Jr. Gold nanoparticles: A critical review of therapeutic applications and toxicological aspects. J. Toxicol. Environ. Health B Crit. Rev. 2016;19(3-4):129-148.CrossRefGoogle Scholar
  8. 8.
    Kam NW, O’Connell M, Wisdom JA, Dai H. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl Acad. Sci. USA. 2005;102(33):11,600-11,605.CrossRefGoogle Scholar
  9. 9.
    Lunov O, Syrovets T, Büchele B, Jiang X, Röcker C, Tron K, Nienhaus GU, Walther P, Mailänder V, Landfester K, Simmet T. The effect of carboxydextran-coated superparamagnetic iron oxide nanoparticles on c-Jun N-terminal kinase-mediated apoptosis in human macrophages. Biomaterials. 2010;31(19): 5063-5071.CrossRefGoogle Scholar
  10. 10.
    Machulkin AE, Garanina AS, Zhironkina OA, Beloglazkina EK, Zyk NV, Savchenko AG, Kotelyanskii VE, Mazhuga AG. Nanohybride materials based on magnetite-gold nanoparticles for diagnostics of prostate cancer: synthesis and in vitro testing. Bull. Exp. Biol. Med. 2016;161(5):706-710.CrossRefGoogle Scholar
  11. 11.
    Qiao R, Yang C, Gao M. Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications. J. Mater. Chem. 2009;19(35):6274-6293.CrossRefGoogle Scholar
  12. 12.
    Pirutin SK, Turovetsky VB, Sarycheva NY, Kamensky AA, Druzhko AB, Kalihevich VN. Influence of tetrapeptide tuftsin on intracellular ph of mouse peritoneal macrophages. Moscow University Biol. Sci. Bull. 2016;71(1):58-61.CrossRefGoogle Scholar
  13. 13.
    Tse BW, Cowin GJ, Soekmadji C, Jovanovic L, Vasireddy RS, Ling MT, Khatri A, Liu T, Thierry B, Russell PJ. PSMAtargeting iron oxide magnetic nanoparticles enhance MRI of preclinical prostate cancer. Nanomedicine. 2014;10(3):375-386.CrossRefGoogle Scholar
  14. 14.
    Wang YX. Superparamagnetic iron oxide based MRI contrast agents: Current status of clinical application. Quant. Imaging Med. Sur. 2011;1(1):36-40.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • S. K. Pirutin
    • 1
    • 2
  • M. V. Efremova
    • 1
    • 3
  • A. I. Yusipovich
    • 1
  • V. B. Turovetskii
    • 1
  • G. V. Maksimov
    • 1
  • A. B. Druzhko
    • 2
  • A. G. Mazhuga
    • 1
    • 3
    • 4
  1. 1.M. V. Lomonosov Moscow State UniversityMoscowRussia
  2. 2.Institute of Theoretical and Experimental BiophysicsRussian Academy of SciencesPushchinoRussia
  3. 3.National University of Science and Technology MISISMoscowRussia
  4. 4.D. I. Mendeleev University of Chemical Technology of RussiaMoscowRussia

Personalised recommendations