Bulletin of Experimental Biology and Medicine

, Volume 166, Issue 3, pp 377–382 | Cite as

Effects of Laminins 332 and 411 on the Epithelial—Mesenchymal Status of Colorectal Cancer Cells

  • D. V. Mal’tsevaEmail author
  • Yu. A. Makarova
  • M. P. Raigorodskaya
  • S. A. Rodin

The effects of laminins 332 and 411 (LM-332 and LM-411) on the epithelial—mesenchymal transformation of colorectal cancer cells (lines HT-29, HCT-116, and RKO) with different metastatic potential were studied. Culturing of RKO cells on both laminins was associated with modification of the cell shape, which became more spindle-like or stellate, and with higher expression of EMT-associated transcription factors SNAI1 and ZEB1. In addition, culturing on LM-332 led to a decrease in the expression of laminin α5 chain (LAMA5), while culturing on LM-411 led to an increase in the expression of a cell—cell junction component (DSP). Culturing of HT-29 cells on LM-332 was associated with the formation of more close contacts between the cells and by a higher expression of epithelial markers (CDH1 and DSP genes) and a decrease in SNAI1 expression. Culturing of HCT-116 cells on both laminins led to a decrease in FN1 expression, on LM-332 — to an increase in laminin α4 chain (LAMA4) expression, and on LM-411 — to a lesser expression of LAMA4 and transcription factors SNAI2 and ZEB1. These data indicated that colorectal cancer cell adhesion to laminins contributed to the probability of epithelial—mesenchymal transformation of cells. The direction of this transformation seemed to depend on the initial characteristics of the cells.

Key Words

colorectal cancer laminin 332 (laminin-5) laminin 411 (laminin-8) LAMA5 epithelial—mesenchymal transformation (EMT) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shkurnikov MY, Maltseva DV, Knyazev EN, Alekseev BY. Expression of Stroma Components in the Lymph Nodes Affected by Prostate Cancer Metastases. Mol. Biol. (Mosk.). 2018;52(5):810-816.CrossRefGoogle Scholar
  2. 2.
    Chartier NT, Lainé M, Gout S, Pawlak G, Marie CA, Matos P, Block MR, Jacquier-Sarlin MR. Laminin-5-integrin interaction signals through PI 3-kinase and Rac1b to promote assembly of adherens junctions in HT-29 cells. J. Cell Sci. 2006;119(Pt 1):31-46.CrossRefGoogle Scholar
  3. 3.
    Collins C, Nelson WJ. Running with neighbors: coordinating cell migration and cell—cell adhesion. Curr. Opin. Cell Biol. 2015;36:62-70.CrossRefGoogle Scholar
  4. 4.
    Doi M, Thyboll J, Kortesmaa J, Jansson K, Iivanainen A, Parvardeh M, Timpl R, Hedin U, Swedenborg J, Tryggvason K. Recombinant human laminin-10 (alpha5beta1gamma1). Production, purification, and migration-promoting activity on vascular endothelial cells. J. Biol. Chem. 2002;277(15):12,741-12,748.CrossRefGoogle Scholar
  5. 5.
    Domogatskaya A, Rodin S, Tryggvason K. Functional diversity of laminins. Annu. Rev. Cell Dev. Biol. 2012;28:523—553.CrossRefGoogle Scholar
  6. 6.
    Galatenko VV, Maltseva DV, Galatenko AV, Rodin S, Tonevitsky AG. Cumulative prognostic power of laminin genes in colorectal cancer. BMC Med. Genomics. 2018;11(Suppl. 1):9. doi: CrossRefGoogle Scholar
  7. 7.
    Krainova NA, Khaustova NA, Makeeva DS, Ryabenko EA, Sakharov DA, Maltseva DV, Fedotov NN, Galatenko VV, Gudim EA, Shkurnikov MU. Evaluation of potential reference genes for qRT-PCR data normalization in HeLa cells. App. Biochem. Microbiol. 2013;49(9):743-749.CrossRefGoogle Scholar
  8. 8.
    Khaustova NA, Maltseva DV, Oliveira-Ferrer L, Stürken C, Milde-Langosch K, Makarova JA, Rodin S, Schumacher U, Tonevitsky AG. Selectin-independent adhesion during ovarian cancer metastasis. Biochimie. 2017;142:197-206.CrossRefGoogle Scholar
  9. 9.
    Kudriaeva A, Galatenko VV, Maltseva DV, Khaustova NA, Kuzina E, Tonevitsky AG, Gabibov A, Belogurov A. The transcriptome of type I murine astrocytes under interferon-gamma exposure and remyelination stimulus. Molecules. 2017;22(5). pii: E808. doi:
  10. 10.
    Maltseva DV, Krainova NA, Khaustova NA, Nikulin SV, Tonevitskaya SA, Poloznikov AA. Biodistribution of viscumin after subcutaneous injection to mice and in vitro modeling of endoplasmic reticulum stress. Bull. Exp. Biol. Med. 2017;163(4):451-455.CrossRefGoogle Scholar
  11. 11.
    Maltseva DV, Rodin SA. Laminins in metastatic cancer. Mol. Biol. (Mosk). 2018;52(3):411-434.CrossRefGoogle Scholar
  12. 12.
    Nelson J, McFerran NV, Pivato G, Chambers E, Doherty C, Steele D, Timson DJ. The 67 kDa laminin receptor: structure, function and role in disease. Biosci. Rep. 2008;28(1):33-48.CrossRefGoogle Scholar
  13. 13.
    Qin Y, Rodin S, Simonson O.E, Hollande F. Laminins and cancer stem cells: Partners in crime? Semin. Cancer Biol. 2017;45:3-12.CrossRefGoogle Scholar
  14. 14.
    Samatov TR, Tonevitsky AG, Schumacher U. Epithelial-mesenchymal transition: focus on metastatic cascade, alternative splicing, non-coding RNAs and modulating compounds. Mol. Cancer. 2013;12(1):107. doi: Scholar
  15. 15.
    Schreider C, Peignon G, Thenet S, Chambaz J, Pinçon-Raymond M. Integrin-mediated functional polarization of Caco-2 cells through E-cadherin—actin complexes. J. Cell Sci. 2002;115(Pt 3):543-552.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • D. V. Mal’tseva
    • 1
    • 2
    Email author
  • Yu. A. Makarova
    • 2
  • M. P. Raigorodskaya
    • 1
  • S. A. Rodin
    • 1
    • 3
  1. 1.BioClinicum Research CenterMoscowRussia
  2. 2.P. A. Hertsen Moscow Oncology Research Center, Affiliated Department of Center of Radiologythe Ministry of Health of RussiaObninskRussia
  3. 3.Department of Medical Biochemistry and BiophysicsKarolinska InstituteStockholmSweden

Personalised recommendations