Advertisement

Oxyquinoline-Dependent Changes in Claudin-Encoding Genes Contribute to Impairment of the Barrier Function of the Trophoblast Monolayer

  • E. N. Knyazev
  • V. A. Petrov
  • I. N. Gazizov
  • T. N. Gerasimenko
  • I. M. Tsypina
  • A. G. TonevitskyEmail author
  • G. T. Sukhikh
Article
  • 2 Downloads

Natural response to hypoxia critically depends on rapid stabilization of hypoxia-inducible factor (HIF). Under normoxic conditions, HIF-prolyl hydroxylases mark α-subunits of HIF for degradation, while hypoxia results in stabilization of HIF-α. Oxyquinoline derivatives suppress activity of HIF-prolyl hydroxylases leading to HIF activation in the cell. Here we show that 24-h incubation of BeWo b30 choriocarcinoma cells (a model of trophoblast in the placental barrier) with oxyquinoline derivative leads to a decrease in transepithelial electrical resistance (TEER) of the cell monolayer, while the permeability of the monolayer for FITC-dextran (70 kDa) remains unchanged. These findings suggest that the overall barrier function is preserved, while the structure of intercellular tight junctions can undergo minor changes. Using Affymetrix Human Transcriptome Array 2.0, we showed that the treatment with oxyquinoline derivative was followed by a decrease in the expression of claudins 6 and 7 (CLDN6, CLDN7), occludin (OCLN), contact adhesion molecule 3 (JAM3), and angiomotinlike protein 1 (AMOTL1).

Key Words

BeWo b30 placenta hypoxia oxyquinoline barrier 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fomicheva KA, Osip’yants AI, Knyazev EN, Samatov TR, Shkurnikov MY. Detection of potential Metastatic prostate cancer circulating biomarkers by comparison of miRNA profiles in DU145 cells and culture medium. Bull. Exp. Biol. Med. 2017;162(6):792-796.CrossRefGoogle Scholar
  2. 2.
    Harada M, Kondoh M, Masuyama A, Fujii M, Nakanishi T, Utoguchi N, Yagi K, Watanabe Y. Effect of forskolin on the expression of claudin-5 in human trophoblast BeWo cells. Pharmazie. 2007;62(4):291-294.Google Scholar
  3. 3.
    Huang T, Zhou Y, Zhang J, Cheng ASL, Yu J, To KF, Kang W. The physiological role of Motin family and its dysregulation in tumorigenesis. J. Transl. Med. 2018;16(1):98.CrossRefGoogle Scholar
  4. 4.
    Knyazev EN, Fomicheva KA, Mikhailenko DS, Nyushko KM, Samatov TR, Alekseev BY, Shkurnikov M.Y. Plasma levels of hsa-miR-619-5p and hsa-miR-1184 differ in prostatic benign hyperplasia and cancer. Bull. Exp. Biol. Med. 2016;161(1):108-111.CrossRefGoogle Scholar
  5. 5.
    Knyazev EN, Nyushko KM, Alekseev BY, Samatov TR, Shkurnikov MY. Suppression of ITGB4 gene expression in PC-3 cells with short interfering RNA induces changes in the expression of β-integrins associated with RGD-receptors. Bull. Exp. Biol. Med. 2015;159(4):541-545.CrossRefGoogle Scholar
  6. 6.
    Kobayashi K, Kadohira I, Tanaka M, Yoshimura Y, Ikeda K, Yasui M. Expression and distribution of tight junction proteins in human amnion during late pregnancy. Placenta. 2010; 31(2):158-162.CrossRefGoogle Scholar
  7. 7.
    Osipyants AI, Smirnova NA, Khristichenko AY, Hushpulian DM, Nikulin SV, Chubar TA, Zakhariants AA, Tishkov VI, Gazaryan IG, Poloznikov AA. Enzyme-substrate reporters for evaluation of substrate specificity of HIF prolyl hydroxylase isoforms. Biochemistry (Mosc). 2017;82(10):1207-1214.CrossRefGoogle Scholar
  8. 8.
    Poloznikov AA, Zakhariants AA, Nikulin SV, Smirnova NA, Hushpulian DM, Gaisina IN, Tonevitsky AG, Tishkov VI, Gazaryan IG. Structure-activity relationship for branched oxyquinoline HIF activators: Effect of modifications to phenylacetamide “tail”. Biochimie. 2017;133:74-79.CrossRefGoogle Scholar
  9. 9.
    Rudimov EG, Knjazev EN, Khaustova NA, Grigorieva OV, Buravkova LB. Transcriptomic changes in human umbilical cord blood endothelial cells under simulated microgravity. Dokl. Biochem. Biophys. 2017;472(1):1-4.CrossRefGoogle Scholar
  10. 10.
    Schumann S, Buck VU, Classen-Linke I, Wennemuth G, Grümmer R. Claudin-3, claudin-7, and claudin-10 show different distribution patterns during decidualization and trophoblast invasion in mouse and human. Histochem. Cell Biol. 2015;144(6):571-585.CrossRefGoogle Scholar
  11. 11.
    Shen L. Tight junctions on the move: molecular mechanisms for epithelial barrier regulation. Ann. N.Y. Acad. Sci. 2012;1258:9-18.CrossRefGoogle Scholar
  12. 12.
    Shkurnikov MY, Knyazev EN, Wicklein D, Schumacher U, Samatov TR, Tonevitskii AG. Role of L1CAM in the Regulation of the canonical Wnt pathway and class I MAGE genes. Bull. Exp. Biol. Med. 2016;160(6):807-810.CrossRefGoogle Scholar
  13. 13.
    Skurnikov MY, Makarova YA, Knyazev EN, Fomicheva KA, Nyushko KM, Saribekyan EK, Alekseev BY, Kaprin AD. Profile of microRNA in blood plasma of healthy humans. Bull. Exp. Biol. Med. 2016;160(5):632-634.CrossRefGoogle Scholar
  14. 14.
    Stelzer IA, Mori M, DeMayo F, Lydon J, Arck PC, Solano ME. Differential mouse-strain specific expression of Junctional Adhesion Molecule (JAM)-B in placental structures. Cell Adh. Migr. 2016;10(1-2):2-17.CrossRefGoogle Scholar
  15. 15.
    Zhang Y, Zhao HJ, Xia XR, Diao FY, Ma X, Wang J, Gao L, Liu J, Gao C, Cui YG, Liu JY. Hypoxia-induced and HIF1a-VEGF-mediated tight junction dysfunction in choriocarcinoma cells: Implications for preeclampsia. Clin. Chim. Acta. 2017. Dec 6. pii: S0009-8981(17)30495-3. doi:  https://doi.org/10.1016/j.cca.2017.12.010.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • E. N. Knyazev
    • 1
  • V. A. Petrov
    • 1
  • I. N. Gazizov
    • 1
  • T. N. Gerasimenko
    • 1
  • I. M. Tsypina
    • 1
    • 2
  • A. G. Tonevitsky
    • 1
    • 2
    Email author
  • G. T. Sukhikh
    • 3
  1. 1.BioClinicum Research CenterMoscowRussia
  2. 2.National Research University Higher School of EconomicsMoscowRussia
  3. 3.V. I. Kulakov National Medical Research Center for ObstetricsGynecology, and PerinatologyMoscowRussia

Personalised recommendations