Bulletin of Experimental Biology and Medicine

, Volume 166, Issue 3, pp 334–338 | Cite as

Mitochondria-Associated Matrix Metalloproteinases 2 and 9 in Acute Renal Pathologies

  • I. B. Pevzner
  • L. D. Zorova
  • F. A. Galkin
  • E. Yu. PlotnikovEmail author
  • D. B. Zorov

Activities of MMP-2 and MMP-9 in the cytoplasm and mitochondria of kidney cells were evaluated on the models of acute renal pathologies: pyelonephritis, rhabdomyolysis, and ischemia/reperfusion of the kidney. In acute pyelonephritis, a significant increase in the level of MMP-2 and MMP-9 in kidney cells and the appearance of mitochondrial MMP-2 isoform with a lower molecular weight, but still exhibiting proteolytic activity were observed. A direct correlation between the level of MMP-2 and MMP-9 in the kidney and the severity of inflammation in pyelonephritis was revealed. Obviously, the appearance of active protease in the mitochondria of the kidney cells could have an impact on their functioning and, generally, on the fate of renal cells in this pathology.

Key Words

metalloproteinases pyelonephritis mitochondria oxidative stress regeneration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kirpatovskii VI, Kazachenko AV, Plotnikov EY, Kon’kova TA, Drozhzheva VV, Zorov DB. Effects of ischemic and hypoxic preconditioning on the state of mitochondria and function of ischemic kidneys. Bull. Exp. Biol. Med. 2007;143(1):105-109.CrossRefGoogle Scholar
  2. 2.
    Kushlinskii NE, Timofeev YS, Solov’ev YN, Gerstein ES, Lyubimova NV, Bulycheva IV. Components of the RANK/RANKL/OPG system, IL-6, IL-8, IL-16, MMP-2, and calcitonin in the sera of patients with bone tumors. Bull. Exp. Biol. Med. 2014;157(4):520-523.CrossRefGoogle Scholar
  3. 3.
    Ali MA, Fan X, Schulz R. Cardiac sarcomeric proteins: novel intracellular targets of matrix metalloproteinase-2 in heart disease. Trends Cardiovasc. Med. 2011;21(4):112-118.CrossRefGoogle Scholar
  4. 4.
    Bergman MR, Teerlink JR, Mahimkar R, Li L, Zhu BQ, Nguyen A, Dahi S, Karliner JS, Lovett DH. Cardiac matrix metalloproteinase-2 expression independently induces marked ventricular remodeling and systolic dysfunction. Am. J. Physiol. Heart Circ. Physiol. 2007;292(4):H1847-H1860.CrossRefGoogle Scholar
  5. 5.
    Coker ML, Doscher MA, Thomas CV, Galis ZS, Spinale FG. Matrix metalloproteinase synthesis and expression in isolated LV myocyte preparations. Am. J. Physiol. 1999;277(2, Pt 2): H777-H787.Google Scholar
  6. 6.
    Kandasamy AD, Chow AK, Ali MA, Schulz R. Matrix metalloproteinase-2 and myocardial oxidative stress injury: beyond the matrix. Cardiovasc. Res. 2010;85(3):413-423.CrossRefGoogle Scholar
  7. 7.
    Kaneko T, Shimizu A, Mii A, Fujita E, Fujino T, Kunugi S, Du X, Akimoto T, Tsuruoka S, Ohashi R, Masuda Y, Iino Y, Katayama Y, Fukuda Y. Role of matrix metalloproteinase-2 in recovery after tubular damage in acute kidney injury in mice. Nephron Exp. Nephrol. 2012;122(1-2):23-35.CrossRefGoogle Scholar
  8. 8.
    Kluger MA, Zahner G, Paust HJ, Schaper M, Magnus T, Panzer U, Stahl RA. Leukocyte-derived MMP9 is crucial for the recruitment of proinflammatory macrophages in experimental glomerulonephritis. Kidney Int. 2013;83(5):865-877.CrossRefGoogle Scholar
  9. 9.
    Lovett DH, Mahimkar R, Raffai RL, Cape L, Maklashina E, Cecchini G, Karliner JS. A novel intracellular isoform of matrix metalloproteinase-2 induced by oxidative stress activates innate immunity. PLoS One. 2012;7(4):e34177. doi: Scholar
  10. 10.
    Tan RJ, Liu Y. Matrix metalloproteinases in kidney homeostasis and diseases. Am. J. Physiol. Renal Physiol. 2012; 302(11):F1351-F1361.CrossRefGoogle Scholar
  11. 11.
    Vandooren J, Geurts N, Martens E, Van den Steen PE, Opdenakker G. Zymography methods for visualizing hydrolytic enzymes. Nat. Methods. 2013;10(3):211-220.CrossRefGoogle Scholar
  12. 12.
    Wang W, Schulze CJ, Suarez-Pinzon WL, Dyck JR, Sawicki G, Schulz R. Intracellular action of matrix metalloproteinase-2 accounts for acute myocardial ischemia and reperfusion injury. Circulation. 2002;106(12):1543-1549.CrossRefGoogle Scholar
  13. 13.
    Zhao H, Dong Y, Tian X, Tan T.K, Liu Z, Zhao Y, Zhang Y, Harris DCh, Zheng G. Matrix metalloproteinases contribute to kidney fibrosis in chronic kidney diseases. World J. Nephrol. 2013;2(3):84-89.CrossRefGoogle Scholar
  14. 14.
    Zhou HZ, Ma X, Gray MO, Zhu BQ, Nguyen AP, Baker AJ, Simonis U, Cecchini G, Lovett DH, Karliner JS. Transgenic MMP-2 expression induces latent cardiac mitochondrial dysfunction. Biochem. Biophys. Res. Commun. 2007;358(1):189-195.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • I. B. Pevzner
    • 1
    • 2
  • L. D. Zorova
    • 1
    • 2
  • F. A. Galkin
    • 3
  • E. Yu. Plotnikov
    • 1
    • 2
    • 4
    Email author
  • D. B. Zorov
    • 1
    • 2
  1. 1.A. N. Belozersky Research Institute of Physico-Chemical BiologyM. V. Lomonosov Moscow State UniversityMoscowRussia
  2. 2.V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology, and PerinatologyMoscowRussia
  3. 3.Faculty and Bioengineering and BioinformaticsM. V. Lomonosov Moscow State UniversityMoskvaRussia
  4. 4.I. M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of the Russian FederationMoscowRussia

Personalised recommendations