Bulletin of Experimental Biology and Medicine

, Volume 166, Issue 3, pp 310–312 | Cite as

Effect of TRPV1 on Activity of Isoforms of Constitutive Nitric Oxide Synthase during Regulation of Bicarbonate Secretion in the Stomach

  • V. A. ZolotarevEmail author
  • Yu. V. Andreeva
  • R. P. Khropycheva

Application of mild irritants (1 M NaCl; pH 2.0) on the gastric mucosa potentiates the protective secretion of bicarbonates by epithelial cells. This response is mainly mediated by capsaicin-sensitive afferent nerve endings located in the submucosa. It was shown that activation of vanilloid type 1 receptors (TRPV1) induced by exogenous acidification of GM is not sufficient to potentiate the production of HCO3, including production depending on neuronal NO synthase. However, the effect of exogenous acid on TRPV1 leads to activation of endothelial NO synthase that restrict the gastric secretion of \( {\mathrm{HCO}}_3^{-} \).

Key Words

stomach bicarbonate secretion endothelial and neuronal NO synthases capsaicin TRPV1 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zolotarev VA, Andreeva YuV, Vershinina EA, Kropycheva RP. Roles of constitutive synthases of nitric oxide in the regulation of gastric bicarbonate secretion induced by mild irritation of the mucosa. Ross. Fiziol. Zh. 2015;101(4):415-432. Russian.Google Scholar
  2. 2.
    Zolotarev VA, Polenov SA, Lepnev GP, Razumova NA. A method for the continuous quantitative estimation of acid and bicarbonate secretion in the stomach of narcotized rats. Ross. Fiziol. Zh. 1996;82(7):111-116. Russian.Google Scholar
  3. 3.
    Aihara E, Hayashi M, Sasaki Y, Kobata A, Takeuchi K. Mechanisms underlying capsaicin-stimulated secretion in the stomach: comparison with mucosal acidification. J. Pharmacol. Exp. Ther. 2005;315(1):423-432.CrossRefGoogle Scholar
  4. 4.
    Akiba Y, Ghayouri S, Takeuchi T, Mizumori M, Guth PH, Engel E, Swenson ER, Kaunitz JD. Carbonic anhydrases and mucosal vanilloid receptors help mediate the hyperemic response to luminal CO2 in rat duodenum. Gastroenterology. 2006;131(1):142-152.CrossRefGoogle Scholar
  5. 5.
    Allen A, Flemström G. Gastroduodenal mucus bicarbonate barrier: protection against acid and pepsin. Am. J. Physiol. Cell Physiol. 2005;288(1):C1-19.CrossRefGoogle Scholar
  6. 6.
    Bush MA, Pollack GM. Pharmacokinetics and pharmacodynamics of 7-nitroindazole, a selective nitric oxide synthase inhibitor, in the rat hippocampus. Pharm. Res. 2001;18(11):1607-1612.Google Scholar
  7. 7.
    Harada N, Okajima K, Uchiba M, Katsuragi T. Ischemia/reperfusion-induced increase in the hepatic level of prostacyclin is mainly mediated by activation of capsaicin-sensitive sensory neurons in rats. J. Lab. Clin. Med. 2002;139(4):218-226.CrossRefGoogle Scholar
  8. 8.
    Holzer P. Efferent-like roles of afferent neurons in the gut: blood flow regulation and tissue protection. Auton. Neurosci. 2006;125(1-2):70-75.CrossRefGoogle Scholar
  9. 9.
    Price KJ, Hanson PJ, Whittle BJ. Localization of constitutive isoforms of nitric oxide synthase in the gastric glandular mucosa of the rat. Cell Tissue Res. 1996;285(1):157-163.CrossRefGoogle Scholar
  10. 10.
    Raimura M, Tashima K, Matsumoto K, Tobe S, Chino A, Namiki T, Terasawa K, Horie S. Neuronal nitric oxide synthase-derived nitric oxide is involved in gastric mucosal hyperemic response to capsaicin in rats. Pharmacology. 2013;92(1-2):60-70.CrossRefGoogle Scholar
  11. 11.
    Reiche D, Schemann M. Mucosa of the guinea pig gastric corpus is innervated by myenteric neurones with specific neurochemical coding and projection preferences. J. Comp. Neurol. 1999;410(3):489-502.CrossRefGoogle Scholar
  12. 12.
    Sasaki Y, Aihara E, Ohashi Y, Okuda S, Takasuka H, Takahashi K, Takeuchi K. Stimulation by sparkling water of gastroduodenal HCO3— secretion in rats. Med. Sci. Monit. 2009;15(12):BR349-BR356.Google Scholar
  13. 13.
    Southan GJ, Szabó C. Selective pharmacological inhibition of distinct nitric oxide synthase isoforms. Biochem. Pharmacol. 1996;51(4):383-394.CrossRefGoogle Scholar
  14. 14.
    Ugawa S, Ueda T, Yamamura H, Shimada S. In situ hybridization evidence for the coexistence of ASIC and TRPV1 within rat single sensory neurons. Brain Res. Mol. Brain Res. 2005;136(1-2):125-133.CrossRefGoogle Scholar
  15. 15.
    Víteček J, Lojek A, Valacchi G, Kubala L. Arginine-based inhibitors of nitric oxide synthase: therapeutic potential and challenges. Mediators Inflamm. 2012;2012. ID 318087. doi:

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • V. A. Zolotarev
    • 1
    Email author
  • Yu. V. Andreeva
    • 1
  • R. P. Khropycheva
    • 1
  1. 1.I. P. Pavlov Institute of Physiology, Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations