Advertisement

Bulletin of Experimental Biology and Medicine

, Volume 165, Issue 3, pp 403–407 | Cite as

Influence of Specific Bacteriophage on the Level of Vesicle Formation and Morphology of Cells of Yersinia pseudotuberculosis

  • A. A. Byvalov
  • M. A. Malkova
  • A. V. Chernyad’ev
  • L. G. Dudina
  • S. G. Litvinets
  • E. A. Martinson
MORPHOLOGY AND PATHOMORPHOLOGY
  • 25 Downloads

Incubation of Yersinia pseudotuberculosis cells grown on a solid medium with pseudotuberculous diagnostic bacteriophage for 20 min at 37oC led to a significant decrease in the concentration of both components of the system. This effect was absent when the bacteria were grown in a fluid medium. At the same time, this incubation regimen promoted vesicle formation and typical morphological changes in bacteria grown in both surface and suspension cultures. Co-incubation of the bacteriophage with suspension of vesicles isolated from the suspension culture of Y. pseudotuberculosis grown at 10oC (but not 37oC) led to a decrease in plaque-forming activity of the bacteriophage.

Key Words

Y. pseudotuberculosis bacteriophage vesicles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Labinskaya AS. Microbiology with the Technique of Microbiological Research. Moscow, 1978. Russian.Google Scholar
  2. 2.
    Bonnington KE, Kuehn MJ. Protein selection and export via outer membrane vesicles. Biochim. Biophys. Acta. 2014; 1843(8):1612-1619.CrossRefPubMedGoogle Scholar
  3. 3.
    Byvalov AA, Dudina LG, Chernyad’ev AV, Konyshev IV, Litvinets SG, Ovodov YS. Immunochemical Activity of the Yersinia pseudotuberculosis B-antigen. Mol. Gen. Mikrobiol. Virusol. 2015;33(2):32-38.PubMedGoogle Scholar
  4. 4.
    Cabanel N, Galimand M, Bouchier C, Chesnokova M, Klimov V, Carniel E. Molecular bases for multidrug resistance in Yersinia pseudotuberculosis. Int. J. Med. Microbiol. 2017; 307(7):371-381.CrossRefPubMedGoogle Scholar
  5. 5.
    Eddy JL, Gielda LM, Caulfield AJ, Rangel SM, Lathem WW. Production of outer membrane vesicles by the plague pathogen Yersinia pestis. PLoS One. 2014;9(9):e107002. doi:  https://doi.org/10.1371/journal.pone.0107002.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Filippov AA, Sergueev KV, He Y, Huang XZ, Gnade BT, Mueller AJ, Fernandez-Prada CM, Nikolich MP. Bacteriophageresistant mutants in Yersinia pestis: identification of phage receptors and attenuation for mice. PLoS One. 2011;6(9):e25486. doi:  https://doi.org/10.1371/journal.pone.0025486.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Jan AT. Outer Membrane Vesicles (OMVs) of gram-negative bacteria: a perspective update. Front. Microbiol. 2017;8:1053. doi:  https://doi.org/10.3389/fmicb.2017.01053.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kim SH, Kim KS, Lee SR, Kim E, Kim MS, Lee EY, Gho YS, Kim JW, Bishop RE, Chang KT. Structural modifications of outer membrane vesicles to refine them as vaccine delivery vehicles. Biochim. Biophys. Acta. 2009;1788(10):2150-2159.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kolodziejek AM, Caplan AB, Bohach GA, Paszczynski AJ, Minnich SA, Hovde CJ. Physiological levels of glucose induce membrane vesicle secretion and affect the lipid and rotein composition of Yersinia pestis cell surfaces. Appl. Environ. Microbiol. 2013;79(14):4509-4514.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Kulp A, Kuehn MJ. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu. Rev. Microbiol. 2010;64:163-184.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Manning AJ, Kuehn MJ. Contribution of bacterial outer membrane vesicles to innate bacterial defense. BMC Microbiol. 2011;11:258. doi:  https://doi.org/10.1186/1471-2180-11-258.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Olsen I, Amano A. Outer membrane vesicles — offensive weapons or good Samaritans? J. Oral Microbiol. 2015;7. ID 27468. doi:  https://doi.org/10.3402/jom.v7.27468.
  13. 13.
    Reynolds ES. The use of lead citrate at high pH as an electronopaque stain in electron microscopy. J. Cell Biol. 1963;17:208-212.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Schertzer JW, Whiteley M. Bacterial outer membrane vesicles in trafficking, communication and the host-pathogen interaction. J. Mol. Microbiol. Biotechnol. 2013;23(1-2):118-130.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. A. Byvalov
    • 1
    • 2
  • M. A. Malkova
    • 2
  • A. V. Chernyad’ev
    • 1
  • L. G. Dudina
    • 1
    • 2
  • S. G. Litvinets
    • 1
  • E. A. Martinson
    • 1
  1. 1.Institute of Physiology, Komi Research Center, Ural Division of Russia Academy of ScienceVyatka State UniversityKirovRussia
  2. 2.Institute of Physiology, Komi Research CenterUral Division of Russia Academy of ScienceSyktyvkarRussia

Personalised recommendations