Advertisement

Bulletin of Experimental Biology and Medicine

, Volume 165, Issue 3, pp 394–398 | Cite as

Dynamics of Changes in Metabolic and Hematological Parameters after Transplantation of Pancreatic Islet Cells on TiNi Scaffold in Experimental Diabetes Mellitus

  • O. V. Kokorev
  • V. N. Khodorenko
  • S. G. Anikeev
  • V. E. Gunter
BIOTECHNOLOGIES
  • 30 Downloads

The dynamics of the development of the pancreatic islet cells in the porous TiNi scaffold was studied by electron microscopy. Changes in the metabolism of glucose and glycosylated hemoglobin and parameters of the peripheral blood and bone marrow were shown after transplantation of pancreatic islet cells on porous permeable TiNi scaffold during alloxan-induced diabetes. The cells administered on the porous biocompatible scaffold produced more prolonged anti-diabetic effect and normalized hemopoiesis parameters in comparison with their intraperitoneal administration. The experiment on pancreatic islet cells showed that porous permeable TiNi scaffold is a unique cell incubator acceptable for usage for tissue engineering.

Key Words

diabetes mellitus TiNi biocompatibility tissue engineering scaffold 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Borisov MA, Petrakova OS, Gvazava IG, Kalistratova EN, Vasiliev AV. Stem Cells in the Treatment of Insulin-Dependent Diabetes Mellitus. Acta Naturae. 2016;8(3):31-43.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Goldberg ED, Dygai AM, Shakhov VP. Methods of Tissue Culture in Hematology. Tomsk, 1992. Russian.Google Scholar
  3. 3.
    Dedov II, Shestakova MV, Mayorov AY, Vikulova OK, Galstyan GR, Kuraeva TL, Peterkova VA, Smirnova OM, Starostina EG, Surkova EV, Sukhareva OY, Tokmakova AY, Shamkhalova MS, Jarek-Martynova IR, Beshlieva DD, Bondarenko ON, Volevodz NN, Grigoryan OR, Esayan RM, Ibragimova LI, Kalashnikov VY, Lipatov DV, Shestakova EA. Standards of specialized diabetes care. Dedov II, Shestakova MV, Mayorov AY, eds. 8th edition. Sakh. Diabet. 2017;20(1S):1-121. Russian.Google Scholar
  4. 4.
    Ermakova NN, Dygai AM, Zhdanov VV, Zyuz’kov GN, Fomina TI, Ermolaeva LA, Gur’yanceva LA, Hrichkova TY, Vetoshkina TV, Stavrova LA, Udut EV, Simanina EV. Mechanisms of the change the systems celluar renovation under experimental sugar diabetes. Sib. Nauch. Med. Zh. 2007;27(6):72-77. Russian.Google Scholar
  5. 5.
    Maslova OV, Suntsov YI. Epidemiology of diabetes mellitus and microvascular complications. Sakh. Diabet. 2011;(3):6-11. Russian.Google Scholar
  6. 6.
    Medical Materials and Shape Memory Implants. Vol. 1. Shape Memory Implants in Surgery. Gunter VE. ed. Tomsk, 2011. P. 96-99. Russian.Google Scholar
  7. 7.
    Medical Materials and Shape Memory Implants. Vol. 11. Shape Memory Implants in Surgery. Gunter VE. ed. Tomsk, 2012. P. 19-31. Russian.Google Scholar
  8. 8.
    Paster IP. Clinical trails on Langerhans islet transplantation for the treatment of patients with type 1 diabetes melitus. Endokrinologiya. 2015;20(3):626-635. Russian.Google Scholar
  9. 9.
    Sevast’yanov VI, Kirpichnikov MP. Biocompatible Materials. Moscow, 2011. Russian.Google Scholar
  10. 10.
    Skaletskaya GN, Skaletskiy NN, Sevastianov VI. Prospects of application of tissue-engineered pancreatic constructs in the treatment of type 1 diabetes. Vestn. Transplantol. Isskustv. Organov. 2016;18(4):133-145. Russian.Google Scholar
  11. 11.
    Shumakov VI, Skaletskii NN. Transplantation of pancreatic islet cells. Transplantology (Guidelines for Physicians). Moscow, 2006. P. 418-430. Russian.Google Scholar
  12. 12.
    Gan MJ, Albanese-O’Neill A, Haller MJ. Type 1 diabetes: current concepts in epidemiology, pathophysiology, clinical care, and research. Curr. Probl. Pediatr. Adolesc. Health Care. 2012;42(10):269-291.CrossRefPubMedGoogle Scholar
  13. 13.
    Shapiro AM, Ricordi C, Hering BJ, Auchincloss H, Lindblad R, Robertson RP, Secchi A, Brendel MD, Berney T, Brennan DC, Cagliero E, Alejandro R, Ryan EA, DiMercurio B, Morel P, Polonsky KS, Reems JA, Bretzel RG, Bertuzzi F, Froud T, Kandaswamy R, Sutherland DE, Eisenbarth G, Segal M, Preiksaitis J, Korbutt GS, Barton FB, Viviano L, Seyfert-Margolis V, Bluestone J, Lakey JR. International trial of the Edmonton protocol for islet transplantation. N. Engl. J. Med. 2006;355(13):1318-1330.CrossRefPubMedGoogle Scholar
  14. 14.
    Stull ND, Breite A, McCarthy R, Tersey SA, Mirmira RG. Mouse islet of langerhans isolation using a combination of purified collagenase and neutral protease. J. Vis. Exp. 2012;(67). pii: 4137. doi:  https://doi.org/10.3791/4137.
  15. 15.
    Zhang Y, Jalili RB, Warnock GL, Ao Z, Marzban L, Ghahary A. Three-dimensional scaffolds reduce islet amyloid formation and enhance function of cultured human islets. Am. J. Pathol. 2012;181(4):1296-1305.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • O. V. Kokorev
    • 1
  • V. N. Khodorenko
    • 1
  • S. G. Anikeev
    • 1
  • V. E. Gunter
    • 1
  1. 1.Research Institute of Shape Memory Medical Materials and Implants, Siberian Physical and Technological InstituteTomsk State UniversityTomskRussia

Personalised recommendations