Advertisement

Bulletin of Experimental Biology and Medicine

, Volume 165, Issue 3, pp 390–393 | Cite as

Autophagy in Hepatocytes during Distant Tumor Growth

  • N. P. Bgatova
  • S. A. Bakhbaeva
  • Yu. S. Taskaeva
  • V. V. Makarova
  • Yu. I. Borodin
Article

Structural changes in the liver of CBA mice were studied during the development of experimental hepatocarcinoma-29 inoculated into the hip. A decrease in the volume density of hepatocyte cytoplasm, mitochondria, endoplasmic reticulum, and lipid inclusions and an increase in the volume density of lysosomal structures during tumor growth were observed. All stages of intracellular autophagy were recorded by the method of electron microscopy. These stages included the appearance of autophagosomes, autophagolysosomes, and secondary lysosomes in the hepatocyte cytoplasm. Fragments of cytoplasm, glycogen rosettes, mitochondria, and fragments of endoplasmic reticulum with ribosomes were found in autophagosomes. The obtained data indicate the development of non-selective autophagy in the liver during distant tumor growth in aimed at the maintenance of intracellular homeostasis in hepatocytes and energy and trophic homeostasis of organism.

Key Words

distant tumor growth impaired structure of hepatocytes non-selective autophagy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bgatova NP, Borodin YI, Makarova VV, Pozhidaeva AA, Rachkovskaya LN, Konenkov VI. Effects of nanosized lithium carbonate particles on intact muscle tissue and tumor growth. Bull. Exp. Biol. Med. 2014;157(1):89-94.CrossRefPubMedGoogle Scholar
  2. 2.
    Kaledin VI, Zhukova NA, Nikolin VP, Popova NA, Beliaev MD, Baginskaya NV, Litvinova EA, Tolstikova TG, Lushnikova EL, Semenov DE. Hepatocarcinoma-29, a metastasizing transplantable mouse tumor inducing cachexia. Bull. Exp. Biol. Med. 2010;148(6):903-908.CrossRefGoogle Scholar
  3. 3.
    Konenkov VI, Borodin YuI, Makarova OP, Bgatova NP, Rachkovskaya LN. Effects of lithium carbonate nanosized particles on oxidant-antioxidant status in tumor tissue of hepatocarcinoma-29. Patol. Fiziol. Eksper. Ter. 2015;59(2):57-64. Russian.Google Scholar
  4. 4.
    Usynin IF, Panin LE. Mechanisms determining phenotypic heterogeneity of hepatocytes. Biochemistry (Moscow). 2008;73(4):367-380.CrossRefGoogle Scholar
  5. 5.
    Bgatova NP, Makarova OP, Pozhidayeva AA, Borodin YI, Rachkovskaya LN, Konenkov VI. Effects of Lithium Nano-Scaled Particles on Local and Systemic Structural and Functional Organism Transformations Under Tumour Growth. Achievements in the Life Sciences. 2014;8(2):101-111.CrossRefGoogle Scholar
  6. 6.
    Bgatova NP, Shorina GN, Šimek J, Červinkova Z, Holeček M, Shkurupii VA. Structural changes in the liver parenchyma of rats during long-term feeding on diets differing in protein content. Bull. Exp. Biol. 1986;101(5):607-610.CrossRefGoogle Scholar
  7. 7.
    Cui J, Gong Z, Shen HM. The role of autophagy in liver cancer: molecular mechanisms and potential therapeutic targets. Biochim. Biophys. Acta. 2013;1836(1):15-26.PubMedGoogle Scholar
  8. 8.
    Czaja MJ, Ding WX, Donohue TM Jr, Friedman SL, Kim JS, Komatsu M, Lemasters JJ, Lemoine A, Lin JD, Ou JH, Perlmutter DH, Randall G, Ray RB, Tsung A, Yin XM. Functions of autophagy in normal and diseased liver. Autophagy. 2013;9(8):1131-1158.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ding WX. Role of autophagy in liver physiology and pathophysiology. World J. Biol. Chem. 2010;1(1):3-12.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Flores-Toro JA, Go KL, Leeuwenburgh C, Kim JS. Autophagy in the liver: cell’s cannibalism and beyond. Arch. Pharm. Res. 2016;39(8):1050-1061.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kishton RJ, Rathmell JC. Novel therapeutic targets of tumor metabolism. Cancer J. 2015;21(2):62-69.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Komatsu M. Liver autophagy: physiology and pathology. J. Biochem. 2012;152(1):5-15.CrossRefPubMedGoogle Scholar
  13. 13.
    Lupinacci RM, Paye F, Coelho FF, Kruger JA, Herman P. Lymphatic drainage of the liver and its implications in the management of colorectal cancer liver metastases. Updates Surg. 2014;66(4):239-245.CrossRefPubMedGoogle Scholar
  14. 14.
    Mancias JD, Kimmelman AC. Mechanisms of Selective Autophagy in Normal Physiology and Cancer. J. Mol. Biol. 2016; 428(9, Pt A):1659-1680.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Mizushima N. Autophagy: process and function. Genes Dev. 2007;21(22):2861-2873.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • N. P. Bgatova
    • 1
  • S. A. Bakhbaeva
    • 1
  • Yu. S. Taskaeva
    • 1
  • V. V. Makarova
    • 1
  • Yu. I. Borodin
    • 1
  1. 1.Research Institute of Clinical and Experimental Lymphology, Branch of the Federal Research Centre Institute of Cytology and GeneticsSiberian Division of the Russian Academy of SciencesNovosibirskRussia

Personalised recommendations