Bulletin of Experimental Biology and Medicine

, Volume 164, Issue 5, pp 591–595 | Cite as

Assessment of Cardiac Vegetative Control during Acute Graduated Exogenous Normobaric Hypoxia in Rats

  • V. N. Kotel’nikov
  • I. O. Osipov
  • Yu. V. Zayats
  • B. I. Gel’tser
Article
  • 9 Downloads

The effects of exogenous normobaric hypoxic hypoxia on vegetative control of the heart and BP were examined in Wistar rats. The reference ranges of variation pulsometry parameters were determined in rats with normoxemia for 3 physiological variants of autonomic homeostasis: eutony, sympathicotony, and vagotony. Most rats (80%) demonstrated autonomic eutony. The study showed that saturation of arterial blood with oxygen is the most adequate assessment of severity of acute exogenous normobaric hypoxic hypoxia progressing within a closed hypoxic chamber, which standardizes this method and minimizes inaccuracies resulting from individual sensitivity to hypoxic stress. The changes in functional activity of systems that control the heart rhythm closely correlated with the drop in arterial blood oxygenation. While a small arterial hypoxemia activated the ergotropic elements of autonomic nervous system central subdivision accompanied by elevation of systolic BP, the moderate hypoxemia augmented the cholinergic influences and moderated the adrenergic ones under maintaining mobilization of the central autonomic nervous system-control loop and normotension. Severe hypoxemia was manifested by augmented influences from autonomic nervous system central subdivisions on the heart rate, disadaptation of the control systems, and systolic-diastolic arterial hypotension.

Key Words

normobaric hypoxia cardiac autonomic control blood pressure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Koubassov RV. Hormonal Changes in Response to Extreme Environment Factors. Vestn. Ross. Akad. Med. Nauk. 2014;(9-10):102-109. Russian.Google Scholar
  2. 2.
    Filaretova LP. Stress in physiological studies. Ross. Fiziol. Zh. 2010;96(9):924-935. Russian.Google Scholar
  3. 3.
    Aswar U, Bodhankar SL, Mohan V, Thakurdesai PA. Effect of furostanol glycosides from Trigonella foenum-graecum on the reproductive system of male albino rats. Phytother. Res. 2010;24(10):1482-1488.CrossRefPubMedGoogle Scholar
  4. 4.
    Bekaert M, Van Nieuwenhove Y, Calders P, Cuvelier CA, Batens AH, Kaufman JM, Ouwens DM, Ruige JB. Determinants of testosterone levels in human male obesity. Endocrine. 2015;50(1):202-211.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Cain DW, Cidlowski JA. Immune regulation by glucocorticoids. Nat. Rev. Immunol. 2017;17(4):233-247.CrossRefPubMedGoogle Scholar
  6. 6.
    Gray M, Bingham B, Viau V. A comparison of two repeated restraint stress paradigms on hypothalamic-pituitary-adrenal axis habituation, gonadal status and central neuropeptide expression in adult male rats. J. Neuroendocrinol. 2010;22(2):92-101.CrossRefPubMedGoogle Scholar
  7. 7.
    Polovynko ІS, Zajats LМ, Zukow W, Yanchij RI, Popovych ІL. Quantitative evaluation of integrated neuroendocrine and immune responses to chronic stress in rats male. J. Educat, Health Sport. 2016;6(8):154-166. doi:  https://doi.org/10.5281/zenodo.60023.
  8. 8.
    Retana-Márquez S, Vigueras-Villaseñor RM, Juárez-Rojas L, Aragón-Martínez A, Torres GR. Sexual behavior attenuates the effects of chronic stress in body weight, testes, sexual accessory glands, and plasma testosterone in male rats. Horm. Behav. 2014;66(5):766-778.CrossRefPubMedGoogle Scholar
  9. 9.
    Sharma R, Biedenharn KR, Fedor JM, Agarwal A. Lifestyle factors and reproductive health: taking control of your fertility. Reprod Biol Endocrinol. 2013;11:66. doi:  https://doi.org/10.1186/1477-7827-11-66.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Toufexis D, Rivarola MA, Lara H, Viau V. Stress and the reproductive axis. J. Neuroendocrinol. 2014;26(9):573-586.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Viau V, Soriano L, Dallman MF. Androgens alter corticotropin releasing hormone and arginine vasopressin mRNA within forebrain sites known to regulate activity in the hypothalamicpituitary-adrenal axis. J. Neuroendocrinol. 2001;13(5):442-452.Google Scholar
  12. 12.
    Williamson M, Bingham B, Gray M, Innala L, Viau V. The medial preoptic nucleus integrates the central influences of testosterone on the paraventricular nucleus of the hypothalamus and its extended circuitries. J. Neurosci. 2010;30(35):11,762-11,770.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • V. N. Kotel’nikov
    • 1
    • 2
  • I. O. Osipov
    • 2
  • Yu. V. Zayats
    • 3
  • B. I. Gel’tser
    • 3
  1. 1.Far-Eastern Division of State Scientific Research Testing Institute of Military MedicineMinistry of Defense of the Russian FederationVladivostokRussia
  2. 2.Pacific State Medical University, Ministry of Health of the Russian FederationVladivostokRussia
  3. 3.Far-Eastern Federal University, Ministry of Education and Science of the Russian FederationVladivostokRussia

Personalised recommendations