Bulletin of Experimental Biology and Medicine

, Volume 164, Issue 4, pp 561–568 | Cite as

Analysis of the Basic Characteristics of Osteogenic and Chondrogenic Cell Lines Important for Tissue Engineering Implants

  • N. M. Astakhova
  • A. V. Korel’
  • E. I. Shchelkunova
  • K. E. Orishchenko
  • S. V. Nikolaev
  • U. S. Zubairova
  • I. A. Kirilova
Translated from Kletochnye Tekhnologii v Biologii i Meditsine (Cell Technologies in Biology and Medicine)
  • 27 Downloads

We isolated and characterized cultures of bone and cartilage tissue cells of laboratory minipigs. The size and morphological features of adherent osteogenic and chondrogenic cells were specified. During long-term culturing under standard conditions, the studied cultures expressed specific markers that were detected by immunohistochemical staining: alkaline phosphatase and calcium deposits in osteoblasts and type II collagen and cartilage extracellular matrix in chondrogenic cells. Proliferative potential (mitotic index) of both cell types was 4.64% of the total cell number. Cell motility, i.e. the mean velocity of cell motion was 49 pixels/h for osteoblasts and 47 pixels/h for chondroblasts; the mean migration distance was 2045 and 2118 pixels for chondroblasts and osteoblasts, respectively. The obtained cell lines are now used as the control for evaluation of optimal biocompatibility of scaffold materials in various models. Characteristics of the motility of the bone and cartilage tissue cells can be used for modeling and estimation of the rate of cells population of 3D scaffolds made of synthetic and biological polymers with different internal structure and physicochemical properties during designing in vitro tissue implants.

Key Words

osteogenic and chondrogenic cells mitotic index migration rate 3D scaffold 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Deev RV, Isaev AA, Tsupkina NV, Pinaev GP, Bozo IJ, Grebnev AR, Kaligin MS. The tissue engineering bone: a methodological basis and biological properties. Geny Kletki. 2011;6(1):62-67. Russian.Google Scholar
  2. 2.
    Komlev VS, Sergeeva NS, Fedotov AYu, Sviridova IK, Kirsanova VA, Akhmedova SA, Teterina AYu, Zobov YuV, Kuvshinova EA, Shanskii YaD, Barinov SM. Analysis of physicochemical and biological properties of composite alginate-calcium phosphate matrices intended for the use in prototyping technologies for replacement of bone defects Materialovedenie. 2016;(3):38-42. Russian.Google Scholar
  3. 3.
    Nashchekina YA, Nikonov PO, Mikhailov VM, Pinaev GP. Distribution of bone-marrow stromal cells in a 3D scaffold depending on the seeding method and the scaffold inside a surface modification. Cell Tissue Biol. 2014;8(4):313-320.CrossRefGoogle Scholar
  4. 4.
    Cao X, Lin Y, Driscoll TP, Franco-Barraza J, Cukierman E, Mauck RL, Shenoy VB. A chemomechanical model of matrix and nuclear rigidity regulation of focal adhesion size. Biophys J. 2015;109(9):1807-1817.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    De Santis R, Russo A, Gloria A, D’Amora U, Russo T, Panseri S, Sandri M, Tampieri A, Marcacci M, Dediu VA, Wilde C.J, Ambrosio L. Towards the design of 3D fiber-deposited poly(ε-caprolactone)/iron-doped hydroxyapatite nanocomposite magnetic scaffolds for bone regeneration. J. Biomed. Nanotechnol. 2015;11(7):1236-1246.CrossRefPubMedGoogle Scholar
  6. 6.
    Di Silvio L, Gurav N. Osteoblasts. Human Cell Culture. Koller MR, Palsson BO, Masters JRW, eds. London, 2001. P. 221-241.Google Scholar
  7. 7.
    Dillon JP, Waring-Green VJ, Taylor AM, Wilson PJ, Birch M, Gartland A, Gallagher JA. Primary human osteoblast cultures. Methods Mol. Biol. 2012;816:3-18.CrossRefPubMedGoogle Scholar
  8. 8.
    Hadjicharalambous C, Buyakov A, Buyakova S, Kulkov S, Chatzinikolaidou M. Porous alumina, zirconia and alumina/zirconia for bone repair: fabrication, mechanical and in vitro biological response. Biomed. Mater. 2015;10(2). ID 025012. doi:  https://doi.org/10.1088/1748-6041/10/2/025012.
  9. 9.
    Hadjicharalambous C, Mygdali E, Prymak O, Buyakov A, Kulkov S, Chatzinikolaidou M. Proliferation and osteogenic response of MC3T3-E1 pre-osteoblastic cells on porous zirconia ceramics stabilized with magnesia or yttria. J. Biomed. Mater. Res. A. 2015;103(11):3612-3624.CrossRefPubMedGoogle Scholar
  10. 10.
    Huang L, Cai X, Li H, Xie Q, Zhang M, Yang C. The effects of static pressure on chondrogenic and osteogenic differentiation in condylar chondrocytes from temporomandibular joint. Arch. Oral Biol. 2015;60(4):622-630.CrossRefPubMedGoogle Scholar
  11. 11.
    Iandolo D, Ravichandran A, Liu X, Wen F, Chan JK, Berggren M, Teoh SH, Simon DT. Development and characterization of organic electronic scaffolds for bone tissue engineering. Adv. Healthc. Mater. 2016;5(12):1505-1512.CrossRefPubMedGoogle Scholar
  12. 12.
    Khang G. Intelligent Scaffolds for Tissue Engineering and Regenerative Medicine. Boca Raton, 2012. P. 589-606.Google Scholar
  13. 13.
    Maeda A, Bandow K, Kusuyama J, Kakimoto K, Ohnishi T, Miyawaki S, Matsuguchi T. Induction of CXCL2 and CCL2 by pressure force requires IL-1β-MyD88 axis in osteoblasts. Bone. 2015;74:76-82.CrossRefPubMedGoogle Scholar
  14. 14.
    Pati F, Song TH, Rijal G, Jang J, Kim SW, Cho DW. Ornamenting 3D printed scaffolds with cell-laid extracellular matrix for bone tissue regeneration. Biomaterials. 2015;37:230-241.CrossRefPubMedGoogle Scholar
  15. 15.
    Selmeczi D, Mosler S, Hagedorn PH, Larsen NB, Flyvbjerg H. Cell motility as persistent random motion: theories from experiments. Biophys. J. 2005;89(2):912-931.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Smith BD, Grande DA. The current state of scaffolds for musculoskeletal regenerative applications. Nat. Rev. Rheumatol. 2015;11(4):213-222.CrossRefPubMedGoogle Scholar
  17. 17.
    Tsekov R, Lensen M. Brownian motion and temperament of living cells. Chin. Phys. Lett. 2013;30(7):ID 070501.Google Scholar
  18. 18.
    Tsiridis E, Gurav N, Bailey G, Sambrook R, Di Silvio L. A novel ex vivo culture system for studying bone repair. Injury. 2006;37(Suppl. 3):S10-S17.CrossRefPubMedGoogle Scholar
  19. 19.
    Wang T, Yang X, Qi X, Jiang C. Osteoinduction and proliferation of bone-marrow stromal cells in three-dimensional poly(ε-caprolactone)/hydroxyapatite/collagen scaffolds. J. Transl Med. 2015;13:152. doi:  https://doi.org/10.1186/s12967-015-0499-8.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Yin B, Ma P, Chen J, Wang H, Wu G, Li B, Li Q, Huang Z, Qiu G, Wu Z. Hybrid macro-porous titanium ornamented by degradable 3D Gel/nHA micro-scaffolds for bone tissue regeneration. Int. J. Mol. Sci. 2016;17(4):575. doi:  https://doi.org/10.3390/ijms17040575.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • N. M. Astakhova
    • 1
    • 2
  • A. V. Korel’
    • 1
  • E. I. Shchelkunova
    • 1
  • K. E. Orishchenko
    • 3
  • S. V. Nikolaev
    • 3
  • U. S. Zubairova
    • 3
  • I. A. Kirilova
    • 1
  1. 1.Ya. L. Tsivyan Novosibirsk Research Institute of Traumatology and OrthopedicsMinistry of Health of the Russian FederationNovosibirskRussia
  2. 2.Innovative Medical and Technology Center (Medical Technopark)NovosibirskRussia
  3. 3.Federal Research Centre Institute of Cytology and Genetics, Siberian Division of the Russian Academy of SciencesNovosibirskRussia

Personalised recommendations