Bulletin of Experimental Biology and Medicine

, Volume 164, Issue 4, pp 514–518 | Cite as

Analysis of Dynamic Geometric Configuration of the Aortic Channel from the Perspective of Tornado-Like Flow Organization of Blood Flow

  • Sh. T. Zhorzholiani
  • A. A. Mironov
  • E. A. Talygin
  • Yu. M. Tsyganokov
  • A. M. Agafonov
  • G. I. Kiknadze
  • A. Yu. Gorodkov
  • L. A. Bokeriya
Article
  • 18 Downloads

Analysis of the data of morphometry of aortic casts, aortography at different pressures, and multispiral computer tomography of the aorta with contrast and normal pulse pressure showed that geometric configuration of the flow channel of the aorta during the whole cardiac cycle corresponded to the conditions of self-organization of tornado-like quasipotential flow described by exact solutions of the Navier—Stokes equation and continuity of viscous fluid typical for this type of fluid flows. Increasing pressure in the aorta leads to a decrease in the degree of approximation of the channel geometry to the ratio of exact solution and increases the risk of distortions in the structure of the flow. A mechanism of evolution of tornado-like flow in the aorta was proposed.

Key Words

hemodynamics in the aorta geometric configuration of the aortic channel self-organization of tornado-like flow exact solutions of non-stationary equation of hydrodynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Caro CG, Pedley TJ, Schroter RC, Seed W.A. The Mechanics of the Circulation. Moscow, 1981. P. 289-291. Russian.Google Scholar
  2. 2.
    Talygin EA, Zazybo NA, Zhorzholiany ST, Krestinich IM, Mironov AA, Kiknadze GI, Bokerya LA, Gorodkov AY, Makarenko VN, Alexandrova SA. Quantitative Evaluation of Intracardiac Blood Flow by Left Ventricle Dynamic Anatomy Based On Exact Solutions of Non-Stationary Navier-Stocks Equations for Selforganized tornado-Like Flows of Viscous Incompresssible Fluid. Uspekhi Fiziol. Nauk. 2016;47(1):48-68. Russian.Google Scholar
  3. 3.
    Bockeria LA, Kiknadze GI, Gachechiladze IA, Gabidullina RF, Makarenko VN, Gorodkov AYu. Analysis of structure of intraventricular blood flow based on studies of architectonics of trabecular layer in left ventricle. Cardiometry. 2013;(3):5-30.CrossRefGoogle Scholar
  4. 4.
    Bockeria LA, Kiknadze GI, Gachechiladze IA, Gorodkov AY. Application of tornado-flow fundamental hydrodynamic theory to the study of blood flow in the heart: further development of tornado-like jet technology. ASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011. P. 287-296. doi:  https://doi.org/10.1115/IMECE2011-63769.
  5. 5.
    Frazin LJ, Vonesh MJ, Chandran KB, Shipkowitz T, Yaacoub AS, McPherson DD. Confirmation and initial documentation of thoracic and abdominal aortic helical flow An ultrasound study. ASAIO J. 1996;42(6):951-956.CrossRefPubMedGoogle Scholar
  6. 6.
    Kassab GS. Biomechanics of the cardiovascular system: the aorta as an illustratory example. J. R. Soc. Interface. 2006;3(11):719-740.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kiknadze GI, Gachechiladze IA, Gorodkov AYu. Self-organization of tornado-like jets in flows of gases and liquids and the technologies utilizing this phenomenon. Proceedings of the ASME Summer Heat Transfer Conference 2009, HT2009. San Francisco, 2009. P. 547-560. doi:  https://doi.org/10.1115/HT2009-88644
  8. 8.
    Kiknadze GI, Krasnov YK. Evolution of a spout-like flow of a viscous fluid. Sov. Phys. Dokl. 1986;31(10):799-801.Google Scholar
  9. 9.
    Kilner PJ, Yang GZ, Mohiaddin RH, Firmin DN, Longmore DB. Helical and retrograde secondary flow patterns in the aortic arch studied by three-directional magnetic resonance velocity mapping. Circulation. 1993;88(5, Pt 1):2235-2247.CrossRefPubMedGoogle Scholar
  10. 10.
    Kilner PJ, Yang GZ, Wilkes AJ, Mohiaddin RH, Firmin DN, Yacoub MH. Asymmetric redirection of flow through the heart. Nature. 2000;404:759-761.CrossRefPubMedGoogle Scholar
  11. 11.
    Numata S, Itatani K, Kanda K, Doi K, Yamazaki S, Morimoto K, Manabe K, Ikemoto K, Yaku H. Blood flow analysis of the aortic arch using computational fluid dynamics. Eur. J. Cardiothorac. Surg. 2016;49(6):1578-1585.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Sh. T. Zhorzholiani
    • 1
  • A. A. Mironov
    • 1
  • E. A. Talygin
    • 1
  • Yu. M. Tsyganokov
    • 1
  • A. M. Agafonov
    • 1
  • G. I. Kiknadze
    • 1
  • A. Yu. Gorodkov
    • 1
  • L. A. Bokeriya
    • 1
  1. 1.A. N. Bakulev Scientific Center for Cardiovascular SurgeryMinistry of Health of the Russian FederationMoscowRussia

Personalised recommendations