Advertisement

Axiomathes

pp 1–24 | Cite as

Neurogeometry of Perception: Isotropic and Anisotropic Aspects

  • Giovanna CittiEmail author
  • Alessandro Sarti
Original Paper

Abstract

In this paper we first recall geometrical models of neurogeometical in Lie groups and we show that geometrical properties of horizontal cortical connectivity can be considered as a neural correlate of a geometry of the visual plane. Then we introduce a new model of non isotropic cortical connectivity modeled on statistics of images. In this way we are able to justify oblique phenomena comparable with experimental findings.

Keywords

Geometry of vision Amodal completion Visual perception Kanitza triangle Oblique effect Geometric model Neurally based 

Notes

References

  1. Andrews DP (1965) Perception of contours in the central fovea. Nature 205:1218–1220Google Scholar
  2. Angelucci A, Levitt JB, Walton EJS, Hupe J, Bullier J, Lund JS (2002) Circuits for local and global signal integration in primary visual cortex. J Neurosci 22(19):8633–46Google Scholar
  3. Appelle S (1972) Perception and discrimination as a function of stimulus orientation: the “oblique effect” in man and animals. Psychol Bull 78:266–278Google Scholar
  4. Arend LE, Buehler JN, Lockhead GR (1971) Difference information in brightness perception. Percept Psychophys 9:367–370Google Scholar
  5. August J, Zucker SW (2000) The curve indicator random field: curve organization via edge correlation. In: Perceptual organization for artificial vision systems. Springer, pp 265–288Google Scholar
  6. Beck J (1966) Effect of orientation and of shape similarity on perceptual grouping. Percept Psychophys 1:300–302Google Scholar
  7. Beck J (1966) Perceptual grouping produced by changes in orientation and shape. Science 154:538–540Google Scholar
  8. Beck J (1967) Perceptual grouping produced by line figures. Percept Psychophys 2:491–495Google Scholar
  9. Ben-Shahar O, Zucker SW (2004) Geometrical computations explain projection patterns of long range horizontal connections in visual cortex. Neural Comput 16(3):445–476Google Scholar
  10. Ben-Yosef G, Ben-Shahar O (2012) A tangent bundle theory for visual curve completion. IEEE Trans Pattern Anal Mach Intell 34(7):1263–1280Google Scholar
  11. Blakeslee B, McCourt ME (1997) Similar mechanisms underlie simultaneous brightness contrast and grating induction. Vis Res 37:2849–2869Google Scholar
  12. Bosking W, Zhang Y, Schofield B, Fitzpatrick D (1997) Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. J Neurosci 17(6):2112–2127Google Scholar
  13. Bouma H, Andriessen JJ (1968) Perceived orientation of isolated line segments. Vis Res 8:493–507Google Scholar
  14. Brainard DH, Wandell BA (1986) Analysis of the retinex theory of color vision. J Opt Soc Am A 3(10):1651Google Scholar
  15. Bressloff PC, Cowan JD (2003) The functional geometry of local and horizontal connections in a model of V1. J Physiol Paris 97:221–236Google Scholar
  16. Bressloff PC, Cowan JD, Golubitsky M, Thomas PJ, Wiener MC (2002) What geometric visual hallucinations tell us about the visual cortex. Neural Comput 14(3):473–491Google Scholar
  17. Bross M, Szabad T (2000) An oblique benefit: Kanizsa squares versus diamonds with misaligned edges. Percept ECVP Abstr 29:95Google Scholar
  18. Caelli T, Brettel H, Rentschler I, Hilz R (1983) Discrimination thresholds inthe two-dimensional spatial frequency domain. Vis Res 23:129–133Google Scholar
  19. Campbell FW, Kulikowski JJ (1966) Orientational selectivity of the humanvisual system. J Physiol 187:437–445Google Scholar
  20. Citti G, Sarti A (2006) A cortical based model of perceptual completion in the Roto-translation space. J Math Imaging Vis 24(3):307–326Google Scholar
  21. Citti G, Sarti A (2014) Neuromathematics of vision. Springer, BerlinGoogle Scholar
  22. Citti G, Sarti A (2015) A Gauge field model of modal completion. J Math Imaging Vis 52(2):267–284Google Scholar
  23. Cocci G, Barbieri D, Citti G, Sarti A (2015) Cortical spatio-temporal dimensionality reduction for visual grouping. Neural Comput 27:1252–1293Google Scholar
  24. Coifman RR, Lafon S (2006) Diffusion maps. Appl Comput Harmon Anal 21(1):5–30Google Scholar
  25. Daugman J (1985) Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. JOSA A 2(7):1160–1169Google Scholar
  26. De Angelis GC, Ozhawa I, Freeman RD (1995) Receptive-field dynamics in the central visual pathways. Trends Neurosci 18(10):451–458Google Scholar
  27. Duits R, Franken EM (2010) Left invariant parabolic evolution equations on SE(2) and contour enhancement via invertible orientation scores, Part I: linear left-invariant diffusion equations on SE(2). Quart Appl Math 68:255–292Google Scholar
  28. Duits R, Franken E (2010) Left invariant parabolic evolution equations on SE(2) and contour enhancement via invertible orientation scores, Part II: nonlinear left-invariant diffusion equations oninvertible orientation scores. Quart Appl Math 68:293–331Google Scholar
  29. Duits R, Boscain U, Rossi F, Sachkov Y (2014) Association fields via cuspless sub-Riemannian geodesics in SE(2). J Math Imaging Vis 49(2):384–417Google Scholar
  30. Ermentrout GB, Cowan JD (1980) Large scale spatially organized activity in neural nets. SIAM: SIAM J Appl Math 38(1):1–21Google Scholar
  31. Essock EA (1980) The oblique effect of stimulus identification considered with respect to two classes of oblique effects. Perception 9(1):37–46Google Scholar
  32. Favali M, Citti G, Sarti A (2017) Local and global gestalt laws: a neurally based spectral approach. Neural Comput 29(2):394–422Google Scholar
  33. Field D, Hayes A, Hess RF (1993) Contour integration by the human visual system: evidence for a local association field. Vis Res 33(2):173–193Google Scholar
  34. Franceschiello B, Sarti A, Citti G (2018) A mathematical model for geometrical optical illusions. JMIV 60(1):94–108Google Scholar
  35. Fregnac Y, Shulz DE (1999) ctivity-dependent regulation of receptive field properties of cat area 17 by supervised hebbian learning. J Neurobiol 4(1):69–82Google Scholar
  36. Green RT, Hoyle EM (1964) The influence of spatial orientation on the Poggendorf illusion. Acta Psychol 22:348–366Google Scholar
  37. Grossberg S, Mingolla E (1985) Neural dynamics of form perception: boundary completion, illusory figures, and neon color spreading. Psychol Rev 92(2):173Google Scholar
  38. Grossberg S, Todorovic D (1988) Neural dynamics of 1-D and 2-D brightness perception: a unified model of classical and recent phenomena. Percept Psychophys 43:241–277Google Scholar
  39. Hansen BC, Essock EA (2004) A horizontal bias in human visual processing of orientation and its correspondence to the structural components of natural scenes. J Vis 4:1044–1060Google Scholar
  40. Heinricha SP, Aertsen H, Bach M (2008) Oblique effects beyond low-level visual processing. Vis Res 48(6):809–818Google Scholar
  41. Hoffman W (1970) Higher visual perception as prolongation of the basic lie transformation group. Math Biosci 6:437–471Google Scholar
  42. Hubel DH, Wiesel TN (1962) Receptive fiedls, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 160(1):106Google Scholar
  43. Hubel DH, Wiesel TN (1977) Ferrier lecture: functional architecture of macaque monkey visual cortex. Proc R Soc Lond B: Biolog Sci 198(1130):1–59Google Scholar
  44. Hurlbert A (1986) Formal connections between lightness algorithms. J Opt Soc Am A 3(10):1684Google Scholar
  45. Jones JP, Palmer LA (1987) An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. J Neurophysiol 58(6):1233–1258Google Scholar
  46. Kanizsa G (1980) Grammatica del vedere. Il Mulino, BolognaGoogle Scholar
  47. Kellman PJ, Shipley TF (1991) A theory of visual interpolation in object perception. Cogn Psychol 23(2):141–221Google Scholar
  48. KimmelL R, Elad M, Shaked D, Keshet R, Sobel I (2003) A variational framework for retinex. Int J Comput Vis 52(1):7–23Google Scholar
  49. Koflka K (1935) Principles of gestalt psychology. Har, New YorkGoogle Scholar
  50. Kohler W (1929) Gestalt psychology. Liveright, New YorkGoogle Scholar
  51. Leibowitz H, Toefey S (1966) The effect of rotation and tilt on the magnitude of the Poggendorf illusion. Vis Res 6:101–103Google Scholar
  52. Li B, Peterson MR, Freeman RD (2003) Oblique effect: a neural basis in the visual cortex. J Neurophysiol 90(1):204–217Google Scholar
  53. Mach E et al (1861) Uber das sehen von lagen und winkeln durch die bewegung des auges. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften 43(2):215–224Google Scholar
  54. Mannion DJ, McDonald JS, Clifford CW (2010) Orientation anisotropies in human visual cortex. J Neurophysiol 103(6):3465–3471Google Scholar
  55. Mansfield R (1974) Neural basis of orientation perception in primate vision. Science 186(4169):1133–1135Google Scholar
  56. McCann JM et al (2002) Retinex at 40: a joint special session. J Electron Imaging 13:6Google Scholar
  57. Merleau-Ponty M (1945) Phénoménologie de la perception. Éditions Gallimard, Paris, 531 pGoogle Scholar
  58. Morel J-M, Petro AB, Sbert C (2010) A PDE formalization of Retinex theory. IEEE Trans Image Process 19(11):2825–2837Google Scholar
  59. Mumford D (1994) Elastica and computer vision. In: Algebraic geometry and its applications. Springer, pp 491–506Google Scholar
  60. Orban GA, Vandenbussche E, Vogels R (1984) Human orientation discrimination tested with long stimuli. Vis Res 24:121–128Google Scholar
  61. Parent P, Zucker SW (1989) Trace inference, curvature consistency, and curve detection. IEEE Trans Pattern Anal Mach Intell 11(8):823–839Google Scholar
  62. Perona P, Freeman W (1998) A factorization approach to grouping. In: Computer Vision|ECCV’98. Springer, pp 655–670Google Scholar
  63. Petitot J (2003) The neurogeometry of pinwheels as a sub-Riemannian contact structure. J Physiol Paris 97:265–309Google Scholar
  64. Regan D, Price DJ (1986) Periodicity of orientation discrimination and the unconfounding of visual of visual information. Vis Res 26:1299–1302Google Scholar
  65. Ren X, Fowlkes C, Malik J (2008) Learning probabilistic models for contour completion in natural images. Int J Comput Vis 77(1–3):47–63Google Scholar
  66. Rossi AF, Paradiso MA (1996) Temporal limits of brightness induction and mechanisms of brightness perception. Vis Res 36:1391–1398Google Scholar
  67. Sanguinetti G, Citti G, Sarti A (2010) A model of natural image edge co-occurrence in the rototranslation group. J Vis 10(14):37Google Scholar
  68. Sarti A, Citti G (2011) Noncommutative field theory in the visual cortex. In: Tyler C (ed) Computer vision from surfaces to 3D objects. Chapman and Hall/CRC, New YorkGoogle Scholar
  69. Sarti A, Citti G (2015) The constitution of visual perceptual units in the functional architecture of V1. J Comput Neurosci 38(2):285–300Google Scholar
  70. Sarti A, Citti G, Petitot J (2008) The symplectic structure of the primary visual cortex. Biol Cybern 98(1):33–48Google Scholar
  71. Sarti A, Citti G, Petitot J (2009) Functional geometry of the horizontal connectivity in the primary visual cortex. J Physiol Paris 103(1–2):37–45Google Scholar
  72. Sarti A, Citti G, Piotrowski D (2018) Differential heterogenesis and the emergence of semiotic function. Semiotica (in press preprint)Google Scholar
  73. Shapley R, Enroth-Cugell C (1984) Visual adaptation and retinal gain-controls. Prog Retin Res 3:263–346Google Scholar
  74. Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22(8):888–905Google Scholar
  75. Shipley TF, Kellman PJ (1992) Perception of partlky occluded objects and illusory figures: evidence for an identity hypothesis. J Exp Psychol Human Percept Perform 18(1):106Google Scholar
  76. Shipley TF, Kellman PJ (1994) Spatiotemporal boundary formation: boundary, form, and motion perception from transformations of surface elements. J Exp Psychol Gen 123(1):3Google Scholar
  77. Todorovic D (2006) Lightness, illumination, and gradients. Spatial Vis 19(2–4):219–261Google Scholar
  78. Wallace GK (1964) Measurements of the Zollner illusion. Acta Psychol 22:407–12Google Scholar
  79. Weiss Y (1999) Segmentation using eigenvectors: a unifying view. In: The proceedings of the seventh IEEE international conference on computer vision, vol 2, pp 975–982Google Scholar
  80. Wertheimer M (1938) Laws of organization in perceptual forms. Harcourt (Brace and Jovanovich), LondonGoogle Scholar
  81. Westheimer G, Beard BL (1998) Orientation dependency for foveal line stimuli:detection and intensity discrimination, resolution, orientation discriminationand vernier acuity. Vis Res 38:1097–1103Google Scholar
  82. Williams LR, Jacobs DW (1997) Stochastic completion fields. Neural Comput 9(4):837–858Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Dipartimento di matematicaUniversitá degli studi di BolognaBolognaItaly
  2. 2.CAMS - EHESS (Centre d’analyse et de mathématique sociales - Ecole des hautes études en sciences sociales)ParisFrance

Personalised recommendations