Advertisement

dRRT*: Scalable and informed asymptotically-optimal multi-robot motion planning

  • Rahul Shome
  • Kiril Solovey
  • Andrew Dobson
  • Dan Halperin
  • Kostas E. BekrisEmail author
Article
  • 62 Downloads
Part of the following topical collections:
  1. Special Issue on Multi-Robot and Multi-Agent Systems

Abstract

Many exciting robotic applications require multiple robots with many degrees of freedom, such as manipulators, to coordinate their motion in a shared workspace. Discovering high-quality paths in such scenarios can be achieved, in principle, by exploring the composite space of all robots. Sampling-based planners do so by building a roadmap or a tree data structure in the corresponding configuration space and can achieve asymptotic optimality. The hardness of motion planning, however, renders the explicit construction of such structures in the composite space of multiple robots impractical. This work proposes a scalable solution for such coupled multi-robot problems, which provides desirable path-quality guarantees and is also computationally efficient. In particular, the proposed \(\mathtt{dRRT^*}\) is an informed, asymptotically-optimal extension of a prior sampling-based multi-robot motion planner, \(\mathtt{dRRT}\). The prior approach introduced the idea of building roadmaps for each robot and implicitly searching the tensor product of these structures in the composite space. This work identifies the conditions for convergence to optimal paths in multi-robot problems, which the prior method was not achieving. Building on this analysis, \(\mathtt{dRRT}\) is first properly adapted so as to achieve the theoretical guarantees and then further extended so as to make use of effective heuristics when searching the composite space of all robots. The case where the various robots share some degrees of freedom is also studied. Evaluation in simulation indicates that the new algorithm, \(\mathtt{dRRT^*}\)  converges to high-quality paths quickly and scales to a higher number of robots where various alternatives fail. This work also demonstrates the planner’s capability to solve problems involving multiple real-world robotic arms.

Keywords

Multi-robot motion planning Multi-robot problems Motion planning Asymptotic optimality Sampling-based motion planning Multi-arm motion planning 

Notes

References

  1. Adler, A., De Berg, M., Halperin, D., & Solovey, K. (2015). Efficient multi-robot motion planning for unlabeled discs in simple polygons. In: IEEE transactions on automation science and engineering (Vol. 12, pp. 1309–1317). Springer.  https://doi.org/10.1109/TASE.2015.2470096, arXiv:1312.1038.
  2. Atias, A., Solovey, K., & Halperin, D. (2017). Effective metrics for multi-robot motion-planning. In: Proceedings of robotics: Science and systems, Cambridge, Massachusetts.  https://doi.org/10.1177/0278364918784660, arXiv:1705.10300.
  3. Bonilla, M., Pallottino, L., & Bicchi, A. (2017). Noninteracting constrained motion planning and control for robot manipulators. In: IEEE international conference on robotics and automation (pp. 4038–4043).  https://doi.org/10.1109/ICRA.2017.7989463.
  4. Caccavale, F., & Uchiyama, M. (2008). Cooperative manipulators. In B. Siciliano & O. Khatib (Eds.), Springer handbook of robotics (pp. 701–718). Berlin: Springer.  https://doi.org/10.1007/978-3-540-30301-5_30.Google Scholar
  5. Canny, J. F. (1988). The complexity of robot motion planning (Vol. Doctoral D). Cambridge: MIT Press.  https://doi.org/10.1016/j.scriptamat.2009.11.029.zbMATHGoogle Scholar
  6. Cortés, J., & Siméon, T. (2005). Sampling-based motion planning under kinematic loop-closure constraints. In: Workshop on the algorithmic foundations of robotics (pp. 75–90).  https://doi.org/10.1007/10991541_7.
  7. Dobson, A., & Bekris, K. E. (2013). A study on the finite-time near-optimality properties of sampling-based motion planners. In: IEEE/RSJ international conference on intelligent robots and systems (pp. 1236–1241).  https://doi.org/10.1109/IROS.2013.6696508.
  8. Dobson, A., & Bekris, K. E. (2015). Planning representations and algorithms for prehensile multi-arm manipulation. In: IEEE/RSJ international conference on intelligent robots and systems (Vol. 2015-Decem, pp. 6381–6386).  https://doi.org/10.1109/IROS.2015.7354289.
  9. Dobson, A., Solovey, K., Shome, R., Halperin, D., & Bekris, K. E. (2017) Scalable asymptotically-optimal multi-robot motion planning. In: IEEE international symposium on multi-robot and multi-agent systems, Los Angeles, USA.Google Scholar
  10. Dogar, M., Spielberg, A., Baker, S., & Rus, D. (2015). Multi-robot grasp planning for sequential assembly operations. In: IEEE international conference on robotics and automation (pp. 193–200).Google Scholar
  11. Erdmann, M., & Lozano-Perez, T. (1987). On multiple moving objects. Algorithmica, 2(1–4), 477.MathSciNetzbMATHGoogle Scholar
  12. Gammell, J. D., Srinivasa, S. S., & Barfoot, T. D. (2015) BIT *: batch informed trees for optimal sampling-based planning via dynamic programming on implicit random geometric graphs. In: IEEE international conference on robotics and automation (pp. 3067–3074).  https://doi.org/10.1109/ICRA.2015.7139620, arXiv:1405.5848v1
  13. Gharbi, M., Cortés, J., & Siméon, T. (2009). Roadmap composition for multi-arm systems path planning. In: IEEE/RSJ international conference on intelligent robots and systems (pp. 2471–2476).  https://doi.org/10.1109/IROS.2009.5354415
  14. Ghrist, R., O’Kane, J., & LaValle, S. (2005). Pareto optimal coordination on roadmaps. Algorithmic Foundations of Robotics VI, 24(1), 1–16.Google Scholar
  15. Gildardo, S. (2002). Using a PRM planner to compare centralized and decoupled planning for multi-robot systems. In: IEEE international conference on robotics and automation, May (pp. 2112–2119).Google Scholar
  16. Gravot, F., & Alami, R. (2003a). A method for handling multiple roadmaps and its use for complex manipulation planning. In: IEEE international conference on robotics and automation (Cat. No.03CH37422) (Vol. 3, pp. 4–9).  https://doi.org/10.1109/ROBOT.2003.1242038.
  17. Gravot, F., & Alami, R. (2003b). A method for handling multiple roadmaps and its use for complex manipulation planning. In: IEEE international conference on robotics and automation (Cat. No. 03CH37422) (Vol. 3, pp. 4–9).  https://doi.org/10.1109/ROBOT.2003.1242038.
  18. Gravot, F., Alami, R., & Siméon, T. (2002). Playing with several roadmaps to solve manipulation problems. In: IEEE/RSJ international conference on intelligent robots and systems (Vol. 3, pp. 2311–2316).  https://doi.org/10.1109/IRDS.2002.1041612.
  19. Grinstead, C., & Snell, J. (2012). Introduction to probability. Providence, RI: American Mathmatical Society.zbMATHGoogle Scholar
  20. Harada, K., Tsuji, T., & Laumond, J. P. (2014). A manipulation motion planner for dual-arm industrial manipulators. In: IEEE international conference on robotics and automation (pp. 928–934).  https://doi.org/10.1109/ICRA.2014.6906965.
  21. Hirsch, S., & Halperin, D. (2004). Hybrid motion planning: Coordinating two discs moving among polygonal obstacles in the plane. In: Springer tracts in advanced robotics, Springer (Vol. 7 STAR, pp. 239–255).  https://doi.org/10.1007/978-3-540-45058-0_15.
  22. Hopcroft, J. E., Schwartz, J. T., & Sharir, M. (1984). On the complexity of motion planning for multiple independent objects; PSPACE–hardness of the Warehousemans’ problem. International Journal of Robotics Research, 3(4), 76–88.  https://doi.org/10.1177/027836498400300405.Google Scholar
  23. Janson, L., Schmerling, E., Clark, A., & Pavone, M. (2015). Fast marching tree: A fast marching sampling-based method for optimal motion planning in many dimensions. International Journal of Robotics Research, 34(7), 883–921.Google Scholar
  24. Johnson, D. B. (1977). Efficient algorithms for shortest paths in sparse networks. Journal of the ACM, 24(1), 1–13.  https://doi.org/10.1145/321992.321993.MathSciNetzbMATHGoogle Scholar
  25. Johnson, J. K. (2018). On the relationship between dynamics and complexity in multi-agent collision avoidance. In: Autonomous robots, AnnArbor, Michigan (Vol. 42, pp. 1389–1404).  https://doi.org/10.1007/s10514-018-9743-4.
  26. Karaman, S., & Frazzoli, E. (2011). Sampling-based algorithms for optimal motion planning. International Journal of Robotics Research, 30(7), 846–894.  https://doi.org/10.1177/0278364911406761. arXiv:1105.1186.zbMATHGoogle Scholar
  27. Kavraki, L. E., Svestka, P., Latombe, J. C., & Overmars, M. H. (1996). Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automation, 12(4), 566–580.  https://doi.org/10.1109/70.508439.Google Scholar
  28. Kloder, S., & Hutchinson, S. (2005). Path planning for permutation-invariant multi-robot formations. In: IEEE international conference on robotics and automation (pp. 1797–1802).Google Scholar
  29. Koga, Y., & Latombe, J. C. (1994). On multi-arm manipulation planning. In: IEEE international conference on robotics and automation (Vol. 2, pp. 945–952).  https://doi.org/10.1109/ROBOT.1994.351231.
  30. Kornhauser, D., Miller, G., & Spirakis, P. (1984). Coordinating pebble motion on graphs, the diameter of permutation groups, and applications. In: 25th annual symposium onfoundations of computer science, 1984 (pp. 241–250).  https://doi.org/10.1109/SFCS.1984.715921.
  31. Krontiris, A., Shome, R., Dobson, A., Kimmel, A., & Bekris, K. (2015). Rearranging similar objects with a manipulator using pebble graphs. In: IEEE-RAS international conference on humanoid robots (Vol. 2015-Febru, pp 1081–1087).  https://doi.org/10.1109/HUMANOIDS.2014.7041499.
  32. LaValle, S., & Kuffner, J. (1999). Randomized kinodynamic planning. IEEE International Conference on Robotics and Automation, 20, 378–400.Google Scholar
  33. LaValle, S. M., & Hutchinson, S. A. (1998). Optimal motion planning for multiple robots having independent goals. IEEE Transactions on Robotics and Automation, 14(6), 912–925.Google Scholar
  34. Lindemann, S. R., & LaValle, S. M. (2004). Incrementally reducing dispersion by increasing voronoi bias in rrts. In: IEEE international conference on robotics and automation (Vol. 4, pp. 3251–3257).Google Scholar
  35. Luna, R., & Bekris, K. E. (2011). An efficient and complete approach for cooperative path-finding. In: Twenty-fifth AAAI conference on artificial intelligence (pp. 1804–1805).Google Scholar
  36. O’Donnell, P. A., & Lozano-Pérez, T. (1989). Deadlock-free and collision-free coordination of two robot manipulators. In: International conference on robotics and automation (pp. 484–489).  https://doi.org/10.1109/ROBOT.1989.100033.
  37. Pelling, M. J. (1977). Formulae for the arc-length of a curve in \(\mathbb{R}^{N}\). In R. A. Brualdi (Ed.), The American Mathematical Monthly (Vol. 84(6), pp. 465–467). Madison, WI: Mathematical Association of America.Google Scholar
  38. Peng, J., & Akella, S. (2004). Coordinating multiple robots with kinodynamic constraints along specified paths. In J. D. Boissonat, J. Burdick, K. Goldberg, & S. Hutchinson (Eds.), Springer tracts in advanced robotics (Vol. 7 STAR, pp. 221–237). Berlin: Springer.  https://doi.org/10.1007/978-3-540-45058-0_14.Google Scholar
  39. Peng, J., & Akella, S. (2005). Multiple robots with kinodynamic constraints along specified paths. International Journal of Robotics Research, 24(4), 295–310.  https://doi.org/10.1177/0278364905051974.Google Scholar
  40. Salzman, O., Hemmer, M., & Halperin, D. (2015). On the power of manifold samples in exploring configuration spaces and the dimensionality of narrow passages. IEEE Transactions on Automation Science and Engineering, 12(2), 529–538.  https://doi.org/10.1109/TASE.2014.2331983. arXiv:1202.5249.Google Scholar
  41. Salzman, O., Solovey, K., & Halperin, D. (2016). Motion planning for multilink robots by implicit configuration-space tiling. IEEE Robotics and Automation Letters, 1(2), 760–767.  https://doi.org/10.1109/LRA.2016.2524066. arXiv:1504.06631v3.Google Scholar
  42. Schmerling, E., Janson, L., & Pavone, M. (2015a). Optimal sampling-based motion planning under differential constraints: The drift case with linear affine dynamics. In: IEEE conference on decision and control (Vol. 54rd IEEE, pp. 2574–2581).  https://doi.org/10.1109/CDC.2015.7402604, arXiv:1405.7421.
  43. Schmerling, E., Janson, L., & Pavone, M. (2015b). Optimal sampling-based motion planning under differential constraints: The drift case with linear affine dynamics. In: IEEE conference on decision and control (Vol. 54rd IEEE, pp. 2574–2581).  https://doi.org/10.1109/CDC.2015.7402604, arXiv:1405.7421.
  44. Shome, R., & Bekris, K. E. (2017) Improving the scalability of asymptotically optimal motion planning for humanoid dual-Arm manipulators. In: IEEE-RAS international conference on humanoid robots (pp. 271–277).  https://doi.org/10.1109/HUMANOIDS.2017.8246885.
  45. Shome, R., Solovey, K., Yu, J., Bekris, K., & Halperin, D. (2018). Fast, high-quality dual-arm rearrangement in synchronous, monotone tabletop setups. In: Workshop on the algorithmic foundation of robotics. arXiv:1810.12202v1.
  46. Sina Mirrazavi Salehian, S., Figueroa, N., & Billard, A. (2016). Coordinated multi-arm motion planning: Reaching for moving objects in the face of uncertainty. In: Robotics: Science and systems XII.  https://doi.org/10.15607/RSS.2016.XII.019.
  47. Solovey, K., & Halperin, D. (2014). k-Color multi-robot motion planning. International Journal of Robotic Research, 33(1), 82–97.Google Scholar
  48. Solovey, K., & Halperin, D. (2016). On the hardness of unlabeled multi-robot motion planning. International Journal of Robotics Research, 35(14), 1750–1759.  https://doi.org/10.1177/0278364916672311. arXiv:1408.2260.Google Scholar
  49. Solovey, K., Salzman, O., & Halperin, D. (2015a). Finding a needle in an exponential haystack: Discrete RRT for exploration of implicit roadmaps in multi-robot motion planning. International Journal of Robotics Research, 35(5), 501–513.  https://doi.org/10.1177/0278364915615688. arXiv:1305.2889.Google Scholar
  50. Solovey, K., Yu, J., Zamir, O., & Halperin, D. (2015b). Motion planning for unlabeled discs with optimality guarantees. In: Robotics: Science and systems.  https://doi.org/10.15607/RSS.2015.XI.011, arXiv:1504.05218.
  51. Spirakis, P., & Yap, C. K. (1984). Strong NP-hardness of moving many disks. Information Processing Letters, 19(1), 55–59.MathSciNetzbMATHGoogle Scholar
  52. Svestka, P., & Overmars, M. H. (1998). Coordinated path planning for multiple robots. Robotics and Autonomous Systems, 23(3), 125–152.Google Scholar
  53. Tang, S., & Kumar, V. (2015). A complete algorithm for generating safe trajectories for multi-robot teams. In: International symposium on robotics research, sestri levante, Italy (pp. 1–16).  https://doi.org/10.1007/978-3-319-60916-4_34.
  54. Turpin, M., Michael, N., & Kumar, V. (2013). Concurrent assignment and planning of trajectories for large teams of interchangeable robots. In: IEEE international conference on robotics and automation (Vol. 37, pp. 842–848).  https://doi.org/10.1109/ICRA.2013.6630671.
  55. Vahrenkamp, N., Berenson, D., Asfour, T., Kuffner, J., & Dillmann, R. (2009). Humanoid motion planning for dual-arm manipulation and re-grasping tasks. In: IEEE/RSJ international conference on intelligent robots and systems (pp. 2464–2470).  https://doi.org/10.1109/IROS.2009.5354625.
  56. Vahrenkamp, N., Kuhn, E., Asfour, T., & Dillmann, R. (2010). Planning multi-robot grasping motions. In: IEEE-RAS international conference on humanoid robots, humanoids (pp. 593–600).  https://doi.org/10.1109/ICHR.2010.5686844.
  57. Van Den Berg, J., Guy, S. J., Lin, M., Manocha, D., Pradalier, C., Siegwart, R., et al. (2011). Reciprocal n-Body collision avoidance, Springer tracts in advanced robotics (star ed., Vol. 70, pp. 3–19). Berlin: Springer.Google Scholar
  58. Van Den Berg, J., Snoeyink, J., Lin, M., & Manocha, D. (2009). Centralized path planning for multiple robots: Optimal decoupling into sequential plans. In: Robotics: Science and systems V.  https://doi.org/10.15607/RSS.2009.V.018.
  59. Van Den Berg, J. P., & Overmars, M. H. (2005). Prioritized motion planning for multiple robots. In: 2005 IEEE/RSJ international conference on intelligent robots and systems, IROS (pp. 2217–2222).  https://doi.org/10.1109/IROS.2005.1545306.
  60. Wagner, G., & Choset, H. (2013). Subdimensional expansion for multirobot path planning. Artificial Intelligence, 219, 1–46.  https://doi.org/10.1016/j.artint.2014.11.001.MathSciNetzbMATHGoogle Scholar
  61. Yu, J., & LaValle, S. M. (2013). Planning optimal paths for multi-agent systems on graphs. In: IEEE international conference on robotics and automation (pp. 3612–3617).  https://doi.org/10.1109/ICRA.2013.6631084, arXiv:1204.3830v4.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Computer Science Department of Rutgers UniversityPiscatawayUSA
  2. 2.Computer Science Department of Tel Aviv UniversityTel AvivIsrael
  3. 3.Electrical Engineering and Computer Science Department of University of MichiganAnn ArborUSA

Personalised recommendations