Advertisement

Autonomous Robots

, Volume 43, Issue 4, pp 927–946 | Cite as

A dynamical system approach to task-adaptation in physical human–robot interaction

  • Mahdi KhoramshahiEmail author
  • Aude Billard
Article

Abstract

The goal of this work is to enable robots to intelligently and compliantly adapt their motions to the intention of a human during physical Human–Robot Interaction in a multi-task setting. We employ a class of parameterized dynamical systems that allows for smooth and adaptive transitions between encoded tasks. To comply with human intention, we propose a mechanism that adapts generated motions (i.e., the desired velocity) to those intended by the human user (i.e., the real velocity) thereby switching to the most similar task. We provide a rigorous analytical evaluation of our method in terms of stability, convergence, and optimality yielding an interaction behavior which is safe and intuitive for the human. We investigate our method through experimental evaluations ranging in different setups: a 3-DoF haptic device, a 7-DoF manipulator and a mobile platform.

Keywords

Physical human–robot interaction Adaptive behavior Compliant control Dynamical systems Predictive models 

Notes

Acknowledgements

We thank support from the European Communitys Horizon 2020 Research and Innovation programme ICT-23-2014, grant agreement 644727-CogIMon and 643950-SecondHands. Thanks to José R. Medina, Klas Kronander, and Guillaume deChambrier for their help with the controller implementations on Kuka LWR 4+ and Clearpath ridgeback.

Supplementary material

Supplementary material 1 (mp4 14313 KB)

Supplementary material 2 (mp4 18183 KB)

References

  1. Aarno, D., & Kragic, D. (2008). Motion intention recognition in robot assisted applications. Robotics and Autonomous Systems, 56(8), 692–705.CrossRefGoogle Scholar
  2. Bandyopadhyay, T., Chong, Z. J., Hsu, D., Ang Jr, M. H., Rus, D., & Frazzoli, E. (2012). Intention-aware pedestrian avoidance. In ISER (pp. 963–977).Google Scholar
  3. Berger, E., Sastuba, M., Vogt, D., Jung, B., & Ben Amor, H. (2015). Estimation of perturbations in robotic behavior using dynamic mode decomposition. Advanced Robotics, 29(5), 331–343.CrossRefGoogle Scholar
  4. Billard, A. (2017). On the mechanical, cognitive and sociable facets of human compliance and their robotic counterparts. Robotics and Autonomous Systems, 88, 157–164.CrossRefGoogle Scholar
  5. Burdet, E., Osu, R., Franklin, D. W., Milner, T. E., & Kawato, M. (2001). The central nervous system stabilizes unstable dynamics by learning optimal impedance. Nature, 414(6862), 446–449.CrossRefGoogle Scholar
  6. Bussy, A., Gergondet, P., Kheddar, A., Keith, F., & Crosnier, A. (2012a). Proactive behavior of a humanoid robot in a haptic transportation task with a human partner. In IEEE RO-MAN (pp 962–967).Google Scholar
  7. Bussy, A., Kheddar, A., Crosnier, A., & Keith, F. (2012b). Human-humanoid haptic joint object transportation case study. In IEEE/RSJ International conference on intelligent robots and systems (IROS) (pp 3633–3638).Google Scholar
  8. Calinon, S., Bruno, D., & Caldwell, D. G. (2014). A task-parameterized probabilistic model with minimal intervention control. In IEEE international conference on robotics and automation (ICRA) (pp. 3339–3344).Google Scholar
  9. Cherubini, A., Passama, R., Crosnier, A., Lasnier, A., & Fraisse, P. (2016). Collaborative manufacturing with physical human–robot interaction. Robotics and Computer-Integrated Manufacturing, 40, 1–13.CrossRefGoogle Scholar
  10. Corteville, B., Aertbeliën, E., Bruyninckx, H., De Schutter, J., & Van Brussel, H. (2007). Human-inspired robot assistant for fast point-to-point movements. In IEEE international conference on robotics and automation (pp. 3639–3644).Google Scholar
  11. Davidson, P. R., & Wolpert, D. M. (2003). Motor learning and prediction in a variable environment. Current Opinion in Neurobiology, 13(2), 232–237.CrossRefGoogle Scholar
  12. De Santis, A., Siciliano, B., De Luca, A., & Bicchi, A. (2008). An atlas of physical human–robot interaction. Mechanism and Machine Theory, 43(3), 253–270.CrossRefzbMATHGoogle Scholar
  13. Dragan, A. D., Lee, K. C., & Srinivasa, S. S. (2013). Legibility and predictability of robot motion. In 2013 8th ACM/IEEE international conference on human–robot interaction (HRI) (pp 301–308). IEEE.Google Scholar
  14. Duchaine, V., & Gosselin, C. M. (2007). General model of human–robot cooperation using a novel velocity based variable impedance control. In Second joint EuroHaptics conference and symposium on haptic interfaces for virtual environment and teleoperator systems (pp. 446–451).Google Scholar
  15. Evrard, P., & Kheddar, A. (2009). Homotopy switching model for dyad haptic interaction in physical collaborative tasks. In Third joint EuroHaptics conference and symposium on Haptic interfaces for virtual environment and teleoperator systems (pp. 45–50).Google Scholar
  16. Ewerton, M., Neumann, G., Lioutikov, R., Amor, H. B., Peters, J., & Maeda, G. (2015). Learning multiple collaborative tasks with a mixture of interaction primitives. In IEEE international conference on robotics and automation (ICRA) (pp. 1535–1542).Google Scholar
  17. Ganesh, G., Albu-Schäffer, A., Haruno, M., Kawato, M., & Burdet, E. (2010). Biomimetic motor behavior for simultaneous adaptation of force, impedance and trajectory in interaction tasks. In IEEE international conference on robotics and automation (ICRA) (pp. 2705–2711).Google Scholar
  18. Ganesh, G., Takagi, A., Osu, R., Yoshioka, T., Kawato, M., & Burdet, E. (2014). Two is better than one: Physical interactions improve motor performance in humans. Scientific Reports, 4, 3824.CrossRefGoogle Scholar
  19. Ghadirzadeh, A., Bütepage, J., Maki, A., Kragic, D., & Björkman, M. (2016). A sensorimotor reinforcement learning framework for physical human–robot interaction. In IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 2682–2688).Google Scholar
  20. Gribovskaya, E., Kheddar, A., & Billard, A. (2011). Motion learning and adaptive impedance for robot control during physical interaction with humans. In IEEE international conference on robotics and automation (ICRA) (pp. 4326–4332).Google Scholar
  21. Haddadin, S., Albu-Schaffer, A., De Luca, A., & Hirzinger, G. (2008). Collision detection and reaction: A contribution to safe physical human–robot interaction. In Intelligent robots and systems, 2008. IEEE/RSJ international conference on IROS 2008 (pp. 3356–3363). IEEE.Google Scholar
  22. Hogan, N. (1988). On the stability of manipulators performing contact tasks. IEEE Journal on Robotics and Automation, 4(6), 677–686.CrossRefGoogle Scholar
  23. Jarrassé, N., Paik, J., Pasqui, V., & Morel, G. (2008). How can human motion prediction increase transparency? In IEEE international conference on robotics and automation (ICRA) (pp. 2134–2139).Google Scholar
  24. Khansari-Zadeh, S. M., & Billard, A. (2011). Learning stable nonlinear dynamical systems with gaussian mixture models. IEEE Transactions on Robotics, 27(5), 943–957.CrossRefGoogle Scholar
  25. Khoramshahi, M., Shukla, A., & Billard, A. (2014). Cognitive mechanism in synchronized motion: An internal predictive model for manual tracking control. In IEEE international conference on systems, man and cybernetics (pp. 765–771).Google Scholar
  26. Kim, W., Lee, J., Peternel, L., Tsagarakis, N., & Ajoudani, A. (2017). Anticipatory robot assistance for the prevention of human static joint overloading in human–robot collaboration. IEEE robotics and automation letters.Google Scholar
  27. Kouris, A., Dimeas, F., & Aspragathos, N. (2018). A frequency domain approach for contact type distinction in human–robot collaboration. IEEE robotics and automation letters.Google Scholar
  28. Kronander, K., & Billard, A. (2016). Passive interaction control with dynamical systems. IEEE Robotics and Automation Letters, 1(1), 106–113.CrossRefGoogle Scholar
  29. Landi, C. T., Ferraguti, F., Sabattini, L., Secchi, C., & Fantuzzi, C. (2017). Admittance control parameter adaptation for physical human–robot interaction. arXiv:1702.08376.
  30. Lee, S. Y., Lee, K. Y., Lee, S. H., Kim, J. W., & Han, C. S. (2007). Human–robot cooperation control for installing heavy construction materials. Autonomous Robots, 22(3), 305.CrossRefGoogle Scholar
  31. Lee, S. H., Suh, I. H., Calinon, S., & Johansson, R. (2015). Autonomous framework for segmenting robot trajectories of manipulation task. Autonomous Robots, 38(2), 107–141.CrossRefGoogle Scholar
  32. Leica, P., Roberti, F., Monllor, M., Toibero, J. M., & Carelli, R. (2017). Control of bidirectional physical human–robot interaction based on the human intention. Intelligent Service Robotics, 10(1), 31–40.CrossRefGoogle Scholar
  33. Li, Y., Yang, C., & He, W. (2016). Towards coordination in human-robot interaction by adaptation of robot’s cost function. In International conference on advanced robotics and mechatronics (ICARM) (pp. 254–259).Google Scholar
  34. Li, Y., Tee, K. P., Chan, W. L., Yan, R., Chua, Y., & Limbu, D. K. (2015). Continuous role adaptation for human–robot shared control. IEEE Transactions on Robotics, 31(3), 672–681.CrossRefGoogle Scholar
  35. Maeda, Y., Hara, T., & Arai, T. (2001). Human-robot cooperative manipulation with motion estimation. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp 2240–2245.Google Scholar
  36. Maeda, G. J., Neumann, G., Ewerton, M., Lioutikov, R., Kroemer, O., & Peters, J. (2017). Probabilistic movement primitives for coordination of multiple human–robot collaborative tasks. Autonomous Robots, 41(3), 593–612.CrossRefGoogle Scholar
  37. Medina, J. R., Lawitzky, M., Mörtl, A., Lee, D., & Hirche, S. (2011). An experience-driven robotic assistant acquiring human knowledge to improve haptic cooperation. In IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 2416–2422).Google Scholar
  38. Medina, J. R., Lee, D., & Hirche, S. (2012). Risk-sensitive optimal feedback control for haptic assistance. In IEEE international conference on robotics and automation (ICRA) (pp. 1025–1031).Google Scholar
  39. Modares, H., Ranatunga, I., Lewis, F. L., & Popa, D. O. (2016). Optimized assistive human–robot interaction using reinforcement learning. IEEE Transactions on Cybernetics, 46(3), 655–667.CrossRefGoogle Scholar
  40. Noohi, E., Žefran, M., & Patton, J. L. (2016). A model for human–human collaborative object manipulation and its application to human-robot interaction. IEEE Transactions on Robotics, 32(4), 880–896.CrossRefGoogle Scholar
  41. Peternel, L., Petrič, T., & Babič, J. (2017). Robotic assembly solution by human-in-the-loop teaching method based on real-time stiffness modulation. Autonomous Robots, 42, 1–17.CrossRefGoogle Scholar
  42. Peternel, L., Petrič, T., Oztop, E., & Babič, J. (2014). Teaching robots to cooperate with humans in dynamic manipulation tasks based on multi-modal human-in-the-loop approach. Autonomous Robots, 36(1–2), 123–136.CrossRefGoogle Scholar
  43. Petrič, T., Babič, J., et al (2016). Cooperative human-robot control based on fitts’ law. In 2016 IEEE-RAS 16th international conference on humanoid robots (humanoids) (pp. 345–350). IEEE.Google Scholar
  44. Pistillo, A., Calinon, S., & Caldwell, D. G. (2011). Bilateral physical interaction with a robot manipulator through a weighted combination of flow fields. In IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 3047–3052).Google Scholar
  45. Ravichandar, H. C., & Dani, A. (2015). Human intention inference and motion modeling using approximate em with online learning. In 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 1819–1824). IEEEGoogle Scholar
  46. Rozo, L., Calinon, S., Caldwell, D., Jiménez, P., & Torras, C. (2013). Learning collaborative impedance-based robot behaviors. In AAAI conference on artificial intelligence (pp. 1422–1428).Google Scholar
  47. Sartori, L., Becchio, C., & Castiello, U. (2011). Cues to intention: The role of movement information. Cognition, 119(2), 242–252.CrossRefGoogle Scholar
  48. Sawers, A., Bhattacharjee, T., McKay, J. L., Hackney, M. E., Kemp, C. C., & Ting, L. H. (2017). Small forces that differ with prior motor experience can communicate movement goals during human–human physical interaction. Journal of Neuroengineering and Rehabilitation, 14(1), 8.CrossRefGoogle Scholar
  49. Sebanz, N., & Knoblich, G. (2009). Prediction in joint action: What, when, and where. Topics in Cognitive Science, 1(2), 353–367.CrossRefGoogle Scholar
  50. Stefanov, N., Peer, A., & Buss, M. (2010). Online intention recognition for computer-assisted teleoperation. In 2010 IEEE international conference on robotics and automation (ICRA) (pp. 5334–5339). IEEE.Google Scholar
  51. Strabala, K. W., Lee, M. K., Dragan, A. D., Forlizzi, J. L., Srinivasa, S., Cakmak, M., et al. (2013). Towards seamless human–robot handovers. Journal of Human–Robot Interaction, 2(1), 112–132.Google Scholar
  52. Takeda, T., Kosuge, K., & Hirata, Y. (2005). Hmm-based dance step estimation for dance partner robot -ms dance-. In 2005 IEEE/RSJ international conference on intelligent robots and systems, 2005. (IROS 2005) (pp. 3245–3250). IEEE.Google Scholar
  53. van der Wel, R. P., Knoblich, G., & Sebanz, N. (2011). Let the force be with us: Dyads exploit haptic coupling for coordination. Journal of Experimental Psychology: Human Perception and Performance, 37(5), 1420.Google Scholar
  54. Vanderborght, B., Albu-Schäffer, A., Bicchi, A., Burdet, E., Caldwell, D. G., Carloni, R., et al. (2013). Variable impedance actuators: A review. Robotics and Autonomous Systems, 61(12), 1601–1614.CrossRefGoogle Scholar
  55. Vesper, C., Butterfill, S., Knoblich, G., & Sebanz, N. (2010). A minimal architecture for joint action. Neural Networks, 23(8), 998–1003.CrossRefGoogle Scholar
  56. Wang, W., Li, R., Chen, Y., & Jia, Y. (2018). Human intention prediction in human–robot collaborative tasks. In Companion of the 2018 ACM/IEEE international conference on human–robot interaction (pp. 279–280). ACM.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Learning Algorithms and Systems LaboratorySwiss Federal Institute of TechnologyLausanneSwitzerland

Personalised recommendations