Advertisement

Autonomous Robots

, Volume 40, Issue 7, pp 1245–1265 | Cite as

Opportunistic sampling-based active visual SLAM for underwater inspection

  • Stephen M. ChavesEmail author
  • Ayoung Kim
  • Enric Galceran
  • Ryan M. Eustice
Article

Abstract

This paper reports on an active SLAM framework for performing large-scale inspections with an underwater robot. We propose a path planning algorithm integrated with visual SLAM that plans loop-closure paths in order to decrease navigation uncertainty. While loop-closing revisit actions bound the robot’s uncertainty, they also lead to redundant area coverage and increased path length. Our proposed opportunistic framework leverages sampling-based techniques and information filtering to plan revisit paths that are coverage efficient. We employ Gaussian process regression for modeling the prediction of camera registrations and use a two-step optimization procedure for selecting revisit actions. We show that the proposed method offers many benefits over existing solutions and good performance for bounding navigation uncertainty in long-term autonomous operations with hybrid simulation experiments and real-world field trials performed by an underwater inspection robot.

Keywords

Active SLAM Sampling-based planning Gaussian processes Underwater robotics 

Notes

Acknowledgments

This work was supported by the Office of Naval Research under award N00014-12-1-0092, monitored by Dr. T. Swean and T. Kick. We would like to thank J. Vaganay from Bluefin Robotics and P. Ozog for their support during testing. S. Chaves was supported by The SMART Scholarship for Service Program by the Department of Defense.

Supplementary material

Supplementary material 1 (mp4 86614 KB)

References

  1. Bailey, T., & Durrant-Whyte, H. (2006). Simultaneous localization and mapping (SLAM): Part II. IEEE Robotics Automation Magazine, 13(3), 108–117.CrossRefGoogle Scholar
  2. Bajcsy, R. (1988). Active perception. Proceedings of the IEEE, 76(8), 996–1005.CrossRefGoogle Scholar
  3. Barkby, S., Williams, S. B., Pizarro, O., & Jakuba, M. V. (2011). Bathymetric SLAM with no map overlap using Gaussian processes. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 1242–1248). San Francisco, CA.Google Scholar
  4. Bourgault, F., Makarenko, A. A., Williams, S. B., Grocholsky, B., & Durrant-Whyte, H. F. (2002). Information based adaptive robotic exploration. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 540–545). Lausanne.Google Scholar
  5. Bry, A., & Roy, N. (2011). Rapidly-exploring random belief trees for motion planning under uncertainty. In Proceedings of the IEEE international conference on robotics and automation (pp. 723–730). Shanghai.Google Scholar
  6. Chaves, S. M., Kim, A., & Eustice, R. M. (2014). Opportunistic sampling-based planning for active visual SLAM. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 3073–3080). Chicago, IL.Google Scholar
  7. Durrant-Whyte, H., & Bailey, T. (2006). Simultaneous localization and mapping: Part I. IEEE Robotics and Automation Magazine, 13(2), 99–110.CrossRefGoogle Scholar
  8. Eustice, R. M., Singh, H., & Leonard, J. J. (2006a). Exactly sparse delayed-state filters for view-based SLAM. IEEE Transactions on Robotics, 22(6), 1100–1114.CrossRefGoogle Scholar
  9. Eustice, R. M., Singh, H., Leonard, J. J., & Walter, M. R. (2006b). Visually mapping the RMS Titanic: Conservative covariance estimates for SLAM information filters. International Journal of Robotics Research, 25(12), 1223–1242.CrossRefGoogle Scholar
  10. Feder, H. J. S., Leonard, J. J., & Smith, C. M. (1999). Adaptive mobile robot navigation and mapping. International Journal of Robotics Research, 18(7), 650–668.CrossRefGoogle Scholar
  11. Galceran, E., Nagappa, S., Carreras, M., Ridao, P., & Palomer, A. (2013). Uncertainty-driven survey path planning for bathymetric mapping. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 6006–6012). Tokyo.Google Scholar
  12. Gonzalez-Banos, H. H., & Latombe, J. C. (2002). Navigation strategies for exploring indoor environments. International Journal of Robotics Research, 21(10–11), 829–848.CrossRefGoogle Scholar
  13. Hand, D. J. (2008). Statistics: A very short introduction. Oxford: Oxford University Press.CrossRefGoogle Scholar
  14. Hollinger, G. A., & Sukhatme, G. S. (2014). Sampling-based robotic information gathering algorithms. International Journal of Robotics Research, 33(9), 1271–1287.CrossRefGoogle Scholar
  15. Hover, F. S., Eustice, R. M., Kim, A., Englot, B., Johannsson, H., Kaess, M., et al. (2012). Advanced perception, navigation and planning for autonomous in-water ship hull inspection. International Journal of Robotics Research, 31(12), 1445–1464.CrossRefGoogle Scholar
  16. Indelman, V., Carlone, L., & Dellaert, F. (2015). Planning in the continuous domain: A generalized belief space approach for autonomous navigation in unknown environments. International Journal of Robotics Research, 34(7), 849–882.CrossRefGoogle Scholar
  17. Kaess, M., Ranganathan, A., & Dellaert, F. (2008). iSAM: Incremental smoothing and mapping. IEEE Transactions on Robotics, 24(6), 1365–1378.CrossRefGoogle Scholar
  18. Kaess, M., Johannsson, H., Rosen, D., Carlevaris-Bianco, N., & Leonard, J. (2013) Open source implementation of iSAM. http://people.csail.mit.edu/kaess/isam
  19. Karaman, S., & Frazzoli, E. (2011). Sampling-based algorithms for optimal motion planning. International Journal of Robotics Research, 30(7), 846–894.CrossRefzbMATHGoogle Scholar
  20. Kavraki, L. E., Svestka, P., Latombe, J. C., & Overmars, M. (1996). Probabilistic roadmaps for path planning in high dimensional configuration spaces. IEEE Transactions on Robotics and Automation, 12(4), 566–580.CrossRefGoogle Scholar
  21. Kim, A., & Eustice, R. M. (2013). Real-time visual SLAM for autonomous underwater hull inspection using visual saliency. IEEE Transactions on Robotics, 29(3), 719–733.CrossRefGoogle Scholar
  22. Kim, A., & Eustice, R. M. (2015). Active visual SLAM for robotic area coverage: Theory and experiment. International Journal of Robotics Research, 34(4–5), 457–475.CrossRefGoogle Scholar
  23. LaValle, S. M., & Kuffner, J. J. (2001). Randomized kinodynamic planning. International Journal of Robotics Research, 20(5), 378–400.CrossRefGoogle Scholar
  24. Melkumyan, A., & Ramos, F. (2009). A sparse covariance function for exact Gaussian process inference in large datasets. In Proceedings of the international joint conference on artifical intelligence (pp. 1936–1942). Pasadena, CA.Google Scholar
  25. O’Callaghan, S. T., & Ramos, F. T. (2012). Gaussian process occupancy maps. International Journal of Robotics Research, 31(1), 42–62.CrossRefGoogle Scholar
  26. Olson, E. (2011). AprilTag: A robust and flexible visual fiducial system. In Proceedings of the IEEE international conference on robotics and automation (pp. 3400–3407). Shanghai.Google Scholar
  27. Ozog, P., Carlevaris-Bianco, N., Kim, A., & Eustice, R. M. (2016). Long-term mapping techniques for ship hull inspection and surveillance using an autonomous underwater vehicle. Journal of Field Robotics, Special Issue on Safety, Security and Rescue Robotics, 33(3), 265–289.Google Scholar
  28. Patil, S., Kahn, G., Laskey, M., Schulman, J., Goldberg, K., & Abbeel, P. (2014). Scaling up gaussian belief space planning through covariance-free trajectory optimization and automatic differentiation. In Proceedings of the international workshop on the algorithmic foundations of robotics, Istanbul.Google Scholar
  29. Prentice, S., & Roy, N. (2009). The belief roadmap: Efficient planning in belief space by factoring the covariance. International Journal of Robotics Research, 28(11–12), 1448–1465.CrossRefGoogle Scholar
  30. Rasmussen, C. E., & Williams, C. K. I. (2006). Gaussian processes for machine learning. Cambridge, MA: The MIT Press.zbMATHGoogle Scholar
  31. Sim, R., & Roy, N. (2005). Global a-optimal robot exploration in SLAM. In Proceedings of the IEEE international conference on robotics and automation (pp. 661–666). Barcelona.Google Scholar
  32. Smith, R., Self, M., & Cheeseman, P. (1990). Estimating uncertain spatial relationships in robotics. In I. Cox & G. Wilfong (Eds.), Autonomous robot vehicles (pp. 167–193). New York: Springer.CrossRefGoogle Scholar
  33. Stachniss, C., Grisetti, G., & Burgard, W. (2005). Information gain-based exploration using Rao-Blackwellized particle filters. In Proceedings of the robotics: science & systems conference, Cambridge, MA.Google Scholar
  34. Valencia, R., Andrade-Cetto, J., & Porta, J. (2011). Path planning in belief space with pose SLAM. In Proceedings of the IEEE international conference on robotics and automation (pp. 78–83). Shanghai.Google Scholar
  35. Valencia, R., Miro, J., Dissanayake, G., & Andrade-Cetto, J. (2012). Active pose SLAM. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 1885–1891). Vilamoura.Google Scholar
  36. Valencia, R., Morta, M., Andrade-Cetto, J., & Porta, J. (2013). Planning reliable paths with pose SLAM. IEEE Transactions on Robotics, 29(4), 1050–1059.CrossRefGoogle Scholar
  37. van den Berg, J., Patil, S., & Alterovitz, R. (2012). Motion planning under uncertainty using iterative local optimization in belief space. International Journal of Robotics Research, 31(11), 1263–1278.CrossRefGoogle Scholar
  38. Whaite, P., & Ferrie, F. (1997). Autonomous exploration: Driven by uncertainty. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(3), 193–205.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Stephen M. Chaves
    • 1
    Email author
  • Ayoung Kim
    • 2
  • Enric Galceran
    • 3
  • Ryan M. Eustice
    • 1
  1. 1.University of MichiganAnn ArborUSA
  2. 2.Korea Advanced Institute of Science and TechnologyDaejeonKorea
  3. 3.ETH ZurichZurichSwitzerland

Personalised recommendations