Autonomous Robots

, Volume 34, Issue 1–2, pp 35–45 | Cite as

Real-time visuomotor update of an active binocular head

  • Michael SapienzaEmail author
  • Miles Hansard
  • Radu Horaud


In order for a binocular head to perform optimal 3D tracking, it should be able to verge its cameras actively, while maintaining geometric calibration. In this work we introduce a calibration update procedure, which allows a robotic head to simultaneously fixate, track, and reconstruct a moving object in real-time. The update method is based on a mapping from motor-based to image-based estimates of the camera orientations, estimated in an offline stage. Following this, a fast online procedure is presented to update the calibration of an active binocular camera pair. The proposed approach is ideal for active vision applications because no image-processing is needed at runtime for the scope of calibrating the system or for maintaining the calibration parameters during camera vergence. We show that this homography-based technique allows an active binocular robot to fixate and track an object, whilst performing 3D reconstruction concurrently in real-time.


Real-time vision Active binocular vision Visual tracking 3D reconstruction 

Supplementary material

(MPG 9.0 MB)


  1. Aryananda, L., & Weber, J. (2004). MERTZ: A quest for a robust and scalable active vision humanoid head robot. In Proc. IEEE/RAS int. conf. on humanoid robots (pp. 513–532). Google Scholar
  2. Bajcsy, R. (1988). Active perception. Proceedings of the IEEE, 76(8), 996–1005. CrossRefGoogle Scholar
  3. Barreto, J., Perdigoto, L., Caseiro, R., & Araujo, H. (2010). Active stereo tracking of N≤3 targets using line scan cameras. IEEE Transactions on Robotics, 26(3), 442–457. CrossRefGoogle Scholar
  4. Beira, R., Lopes, M., Praga, M., Santos-Victor, J., Bernardino, A., Metta, G., Becchi, F., & Saltaren, R. (2006). Design of the robot-cub (icub) head. In Proc. IEEE int. conf. on robotics and automation (pp. 94–100). Google Scholar
  5. Bellotto, N., & Hu, H. (2010). Computationally efficient solutions for tracking people with a mobile robot: an experimental evaluation of Bayesian filters. Autonomous Robots, 28, 425–438. CrossRefGoogle Scholar
  6. Björkman, M., & Eklundh, J. (2002). Real-time epipolar geometry estimation of binocular stereo heads. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(3), 425–432. CrossRefGoogle Scholar
  7. Brandt, S. S. (2008). On the probabilistic epipolar geometry. Image and Vision Computing, 26(3), 405–414. CrossRefGoogle Scholar
  8. Csurka, G., Zeller, C., Zhang, Z., & Faugeras, O. D. (1997). Characterizing the uncertainty of the fundamental matrix. Computer Vision and Image Understanding, 68(1), 18–36. CrossRefGoogle Scholar
  9. Frintrop, S., & Jensfelt, P. (2008). Active gaze control for attentional visual SLAM. In Proc. IEEE int. conf. robotics and automation (pp. 3690–3697). Google Scholar
  10. Grosso, E., & Tistarelli, M. (1995). Active/dynamic stereo vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(9), 868–879. CrossRefGoogle Scholar
  11. Hansard, M., & Horaud, R. (2008). Cyclopean geometry of binocular vision. Journal of the Optical Society of America A, Online, 25, 2357–2369. CrossRefGoogle Scholar
  12. Harris, C., & Stephens, M. (1988). A combined corner and edge detector. In Proc. 4th alvey vision conference (pp. 147–151). Google Scholar
  13. Hart, J., Scassellati, B., & Zucker, S. (2002). Epipolar geometry for humanoid robotic heads. In Proc. 7th int. workshop on advanced motion control (pp. 567–572). Google Scholar
  14. Hartley, R. (1997). Self-calibration of stationary cameras. International Journal of Computer Vision, 22(1), 5–23. CrossRefGoogle Scholar
  15. Hartley, R., & Zisserman, A. (2004). Multiple view geometry in computer vision (2nd edn.). Cambridge: Cambridge University Press. zbMATHCrossRefGoogle Scholar
  16. Hayman, E., & Murray, D. (2003). The effects of translational misalignment when self-calibrating rotating and zooming cameras. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(8), 1015–1020. CrossRefGoogle Scholar
  17. Horaud, R., Knossow, D., & Michaelis, M. (2006). Camera cooperation for achieving visual attention. Machine Vision and Applications, 16(6), 330–342. CrossRefGoogle Scholar
  18. Knight, J., & Reid, I. (2006). Automated alignment of robotic pan-tilt camera units using vision. International Journal of Computer Vision, 68(3), 219–237. CrossRefGoogle Scholar
  19. Miwa, H., Okuchi, T., Takanobu, H., & Takanishi, A. (2002). Development of a new human-like head robot we-4. In Proc. IEEE/RSJ int. conf. on intelligent robots and systems (pp. 2443–2448). CrossRefGoogle Scholar
  20. Pagel, M., von Mäel, E., & von der Malsburg, C. (1998). Self calibration of the fixation movement of a stereo camera head. Autonomous Robots, 5, 355–367. CrossRefGoogle Scholar
  21. POP Consortium (2008). Perception on purpose. European Project FP6-IST-2004-027268.
  22. Ruf, A., & Horaud, R. (1999). Visual servoing of robot manipulators. Part I: projective kinematics. The International Journal of Robotics Research, 18(11), 1101–1118. CrossRefGoogle Scholar
  23. Shih, S. W., Hung, Y. P., & Lin, W. S. (1998). Calibration of an active binocular head. IEEE Transactions on Systems, Man and Cybernetics Part A Systems and Humans, 28(4), 426–442. CrossRefGoogle Scholar
  24. Viola, P., & Jones, M. J. (2004). Robust real-time face detection. International Journal of Computer Vision, 57, 137–154. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Systems and Control EngineeringUniversity of MaltaMsida MSDMalta
  2. 2.School of Electronic Engineering and Computer Science, Queen MaryUniversity of LondonLondonUK
  3. 3.INRIA Grenoble Rhône-AlpesMontbonnotFrance

Personalised recommendations