Advertisement

Autonomous Robots

, 31:103 | Cite as

Myriapod-like ambulation of a segmented microrobot

  • Katie L. HoffmanEmail author
  • Robert J. Wood
Article

Abstract

Segmented myriapod-like bodies may offer performance benefits over more common fixed body morphologies for ambulation. Here, the design of a segmented ambulatory microrobot with a flexible backbone is presented. A dynamic model describing the motion of the microrobot is used to determine body parameters. A three-segment microrobot was fabricated using the Smart Composite Microstructures process and piezoelectric bimorph actuators, and forward locomotion on a flat surface was demonstrated. The footprint of the 750 mg microrobot is 3.5 by 3.5 cm, and it has potential advantages over rigid body hexapedal microrobots in climbing, versatility, and stability.

Keywords

Microrobots Biomimicry Ambulatory robots Modular robots 

Supplementary material

(MPG 7.17 MB)

References

  1. Anderson, B., Shultz, J., & Jayne, B. (1995). Axial kinematics and muscle activity during terrestrial locomotion of the centipede Scolopendra heros. J. Exp. Biol., 198(5), 1185–1195. Google Scholar
  2. Baisch, A., & Wood, R. (2009). Design and fabrication of the Harvard ambulatory microrobot. In 14th int. symp. of robotics research. Google Scholar
  3. Birkmeyer, P., Peterson, K., & Fearing, R. (2009). DASH: a dynamic 16g hexapedal robot. In Proc. IEEE/RSJ international conference on intelligent robots and systems. Google Scholar
  4. Chen, V., & Tedrake, R. (2007). Passive dynamic walking with knees: a point foot model. Massachusetts Institute of Technology. Google Scholar
  5. Edgecombe, G., & Giribet, G. (2006). Evolutionary biology of centipedes (Myriapoda: Chilopoda). The Annual Review of Entomology, 52, 151–170. CrossRefGoogle Scholar
  6. Full, R., & Tu, M. (1991). Mechanics of a rapid running insect: two-, four- and six-legged locomotion. Journal of Experimental Biology, 156, 215–231. Google Scholar
  7. Hoffman, K., & Wood, R. (2010). Towards a multi-segment ambulatory microrobot. In Proc. IEEE international conference on robotics and automation. Google Scholar
  8. Holmes, P., Full, R., Koditschek, D., & Guckenheimer, J. (2006). The dynamics of legged locomotion: models, analyses, and challenges. Dynamics, 48(2), 207–304. zbMATHMathSciNetGoogle Scholar
  9. Hoover, A., Steltz, E., & Fearing, R. (2008). RoACH: An autonomous 2.4 g crawling hexapod robot. In IEEE/RSJ international conference on intelligent robots and systems, pp. 26–33. Google Scholar
  10. Jimenez, B., & Ikspeert, A. (2007). Centipede robot locomotion. Google Scholar
  11. Karpelson, M., Wei, G. Y., & Wood, R. (2009). Milligram-scale high-voltage power electronics for piezoelectric microrobots. In IEEE international conference on robotics and automation. Google Scholar
  12. Lobontiu, N., Goldfarb, M., & Garcia, E. (2001). A piezoelectric-driven inchworm locomotion device. Mechanism and Machine Theory, 36(4), 425–443. zbMATHCrossRefGoogle Scholar
  13. Manton, S., & Harding, M. (1952). The evolution of Arthropodan locomotory mechanisms—Part 3. The locomotion of the Chilopoda and Pauropoda. Journal of the Linnean Society of London Zoology, 42(284), 118–167. CrossRefGoogle Scholar
  14. Matthey, L., Righetti, L., & Ijspeert, A. (2008). Experimental study of limit cycle and chaotic controllers for the locomotion of centipede robots. In IEEE/RSJ international conference on intelligent robots and systems, pp. 1860–1865. Google Scholar
  15. Nohara, B., & Nishizawa, T. (2005). An optimal working function based on the energetic cost for myriapod robot systems: how many legs are optimal for a centipede? Journal of Vibration and Control, 11(10), 1235. zbMATHCrossRefGoogle Scholar
  16. Sahai, R., Avadhanula, S., Groff, R., Steltz, E., Wood, R., & Fearing, R. (2006). Towards a 3g crawling robot through the integration of microrobot technologies. In Proc. IEEE international conference on robotics and automation. Google Scholar
  17. Sfakiotakis, M., & Tsakiris, D. (2009). Undulatory and pedundulatory robotic locomotion via direct and retrograde body waves. In IEEE international conference on robotics and automation, pp. 3457–3463. CrossRefGoogle Scholar
  18. Steltz, E., Seeman, M., Avadhanula, S., & Fearing, R. (2006). Power electronics design choice for piezoelectric microrobots. In IEEE/RSJ international conference on intelligent robots and systems, pp. 1322–1328. CrossRefGoogle Scholar
  19. Wood, R., Steltz, E., & Fearing, R. (2005). Optimal energy density piezoelectric bending actuators. Sensors & Actuators: A Physical, 119(2), 476–488. CrossRefGoogle Scholar
  20. Wood, R., Avadhanula, S., Sahai, R., Steltz, E., & Fearing, R. (2008). Microrobot design using fiber reinforced composites. Journal of Mechanical Design, 130(5), 052,304. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Harvard UniversityCambridgeUSA

Personalised recommendations