Advertisement

Autonomous Robots

, Volume 30, Issue 1, pp 87–98 | Cite as

Human motion database with a binary tree and node transition graphs

  • Katsu YamaneEmail author
  • Yoshifumi Yamaguchi
  • Yoshihiko Nakamura
Article

Abstract

Database of human motion has been widely used for recognizing human motion and synthesizing humanoid motions. In this paper, we propose a data structure for storing and extracting human motion data and demonstrate that the database can be applied to the recognition and motion synthesis problems in robotics. We develop an efficient method for building a human motion database from a collection of continuous, multi-dimensional motion clips. The database consists of a binary tree representing the hierarchical clustering of the states observed in the motion clips, as well as node transition graphs representing the possible transitions among the nodes in the binary tree. Using databases constructed from real human motion data, we demonstrate that the proposed data structure can be used for human motion recognition, state estimation and prediction, and robot motion planning.

Keywords

Motion database Binary tree Human motion recognition Humanoid motion planning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

(MPG 5.02 MB)

References

  1. Arikan, O., & Forsyth, D. A. (2002). Synthesizing constrained motions from examples. ACM Transactions on Graphics, 21(3), 483–490. CrossRefGoogle Scholar
  2. Artac̆, M., Jogan, M., & Leonardis, A. (2002). Incremental PCA or on-line visual learning and recognition. In Proceedings of the 16 th international conference on pattern recognition (pp. 30 781–30 784). Google Scholar
  3. Bentivegna, D., Atkeson, C., & Cheng, G. (2004). Learning tasks from observation and practice. Robotics and Autonomous Systems, 47(2–3), 163–169. CrossRefGoogle Scholar
  4. Billard, A., Calinon, S., & Guenter, F. (2006). Discriminative and adaptive imitation in uni-manual and bi-manual tasks. Robotics and Autonomous Systems, 54, 370–384. CrossRefGoogle Scholar
  5. Brand, M., & Hertzmann, A. (2000). Style machines. In Proceedings of SIGGRAPH 2000 (pp. 183–192). Google Scholar
  6. Breazeal, C., & Scassellati, B. (2002). Robots that imitate humans. Trends in Cognitive Science, 6(11), 481–487. CrossRefGoogle Scholar
  7. Ijspeert, A., Nakanishi, J., & Schaal, S. (2002). Movement imitation with nonlinear dynamical systems in humanoid robots. In Proceedings of international conference on robotics and automation (pp. 1398–1403). Google Scholar
  8. Inamura, T., Toshima, I., Tanie, H., & Nakamura, Y. (2004). Embodied symbol emergence based on mimesis theory. International Journal of Robotics Research, 24(4/5), 363–378. Google Scholar
  9. Kadone, H., & Nakamura, Y. (2005). Symbolic memory for humanoid robots using hierarchical bifurcations of attractors in nonmonotonic neural networks. In Proceedings of international conference on intelligent robots and systems (pp. 2900–2905). Google Scholar
  10. Kittler, J., & Illingworth, J. (1986). Minimum error thresholding. Pattern Recognition, 19(1), 41–47. CrossRefGoogle Scholar
  11. Kovar, L., Gleicher, M., & Pighin, F. (2002). Motion graphs. ACM Transactions on Graphics, 21(3), 473–482. CrossRefGoogle Scholar
  12. Kulić, D., Takano, W., & Nakamura, Y. (2008). Incremental learning, clustering and hierarchy formation of whole body motion patterns using adaptive hidden Markov chains. International Journal of Robotics Research, 27(7), 761–784. CrossRefGoogle Scholar
  13. Lee, J., Chai, J., Reitsma, P. S. A., Hodgins, J. K., & Pollard, N. S. (2002). Interactive control of avatars animated with human motion data. ACM Transactions on Graphics, 21(3), 491–500. Google Scholar
  14. Nakamura, Y., & Hanafusa, H. (1986). Inverse kinematics solutions with singularity robustness for robot manipulator control. Journal of Dynamic Systems, Measurement, and Control, 108, 163–171. zbMATHCrossRefGoogle Scholar
  15. Safonova, A., & Hodgins, J. (2007). Interpolated motion graphs with optimal search. ACM Transactions on Graphics, 26(3), 106. CrossRefGoogle Scholar
  16. Schaal, S., Ijspeert, A., & Billard, A. (2003). Computational approaches to motor learning by imitation. Phylosophical Transactions of the Royal Society of London B: Biological Sciences, 358, 537–547. CrossRefGoogle Scholar
  17. Sidenbladh, H., Black, M., & Sigal, L. (2002). Implicit probabilistic models of human motion for synthesis and tracking. In European conference on computer vision (pp. 784–800). Google Scholar
  18. Vaishnavi, V. K. (1989). Multidimensional balanced binary trees. IEEE Transactions on Computers, 38(7), 968–985. zbMATHCrossRefMathSciNetGoogle Scholar
  19. Ward, J. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58, 236–244. CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Katsu Yamane
    • 1
    Email author
  • Yoshifumi Yamaguchi
    • 2
    • 3
  • Yoshihiko Nakamura
    • 2
  1. 1.Disney ResearchPittsburghUSA
  2. 2.Dept. of Mechano-InformaticsUniversity of TokyoTokyoJapan
  3. 3.Oracle Corporation JapanTokyoJapan

Personalised recommendations