Advertisement

Atomic Energy

, Volume 126, Issue 1, pp 39–45 | Cite as

Study of Phase-Structural Transformations Resulting in Low-Temperature Radiation Embrittlement in Ferritic-Martensitic Steel

  • S. I. Porollo
  • A. M. Dvoryashin
  • A. A. Ivanov
  • Yu. V. Konobeev
  • S. V. Shulepin
Article
  • 2 Downloads

The results of investigations of the microstructure and short-time mechanical properties of EP-450 ferritic-martensitic steel and Kh13M2Yu2 + 1.5% TiO2 dispersion-hardened steel are presented. It is shown that as a result of aging for 25000 h at 400 and 450°C finely dispersed precipitates of the α′-phase are formed in the structure. This increases the strength and decreases the ductility of the steel. The coefficient of hardening by precipitates of the α′-phase in aged dispersion-hardened steel is equal to 2.3. As a result of neutron irradiation at temperature in the interval 285–380°C to maximum dose 56 dpa vacancy pores, dislocation loops, and precipitates of the α′-phase formed in the structure of the EP-450 ferritic-martensitic steel, which also leads to hardening and embrittlement of the steel. The character of the radiation hardening correlates with the dose dependence of the average size and concentration of the formed dislocation loops. The coefficient of hardening of steel EP-450 by dislocation loops and α′-phase precipitates is 1.97 and 2, respectively.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. M. Utevskii, Temper Brittleness of Steel, Metallurgizdat, Moscow (1961).CrossRefGoogle Scholar
  2. 2.
    P. G. Grobner, “The 885 F (475°C) embrittlement of ferritic stainless steels,” Metal. Trans., 4, No. 1, 251–260 (1973).CrossRefGoogle Scholar
  3. 3.
    G. S. Kark, A. A. Astaf’ev, and S. I. Markov, “Relation between radiation embrittlement and temper brittleness of low-alloy steel,” Fiz. Metal. Metalloved., 57, No. 3, 592–598 (1984).Google Scholar
  4. 4.
    T. I. Nichol, A. Datta, and G. Aggen, “Embrittlement of ferritic stainless steels,” Metal. Trans., 11A, 573– 585 (1980).CrossRefGoogle Scholar
  5. 5.
    F. Garner, M. Hamilton, N. Panayotou, and G. Johnson, “The microstructural origin of yield changes in AISI 316 during fission or fusion irradiation,” Nucl. Mater., 103–104, 803–808 (1981).CrossRefGoogle Scholar
  6. 6.
    E. Hornbogen, “The yield stress of alloys with complex microstructure,” in: Proc. Int. Conf. on the Strength of Metals and Alloys, Aachen (1979), Vol. 2, pp. 1327–1342.Google Scholar
  7. 7.
    Yu. V. Konobeev, V. A. Pechenkin, and F. A. Garner, “Theory of radiation hardening of metals and alloys based on the energy condition of ductility,” Izv. Vyssh. Uchebn. Zaved. Yad. Energet., No. 4, 106–115 (2017).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • S. I. Porollo
    • 1
  • A. M. Dvoryashin
    • 1
  • A. A. Ivanov
    • 1
  • Yu. V. Konobeev
    • 1
  • S. V. Shulepin
    • 1
  1. 1.State Science Center of the Russian Federation – Leipunskii Institute for Physics and Power Engineering (IPPE)ObninskRussia

Personalised recommendations