Advertisement

Atomic Energy

, Volume 126, Issue 1, pp 12–15 | Cite as

Combined Neutronics Calculation of the Radiation Protection for a Nuclear Reactor with Heavy Liquid-Metal Coolant

  • E. A. Zemskov
  • I. A. Lyamtsev
  • K. G. Mel’nikov
  • I. V. Tormyshev
  • I. R. Suslov
Article
  • 2 Downloads

The problem of calculating a model of the radiation protection of a monoblock reactor, having a fast neutron spectrum and cooled by a eutectic lead-bismuth alloy, by a combined method using the CADIS methodology is examined. A deterministic calculation of the adjoint problem is performed by the method of characteristics, ensuring the smoothness of the solution. An algorithm for selecting the nodes of the weight window grid is presented for the many-group problem. The results of the neutron flux density distribution for the computational domain are described. A statistical error of 7% is obtained, confirming the methodological reliability of the spatial distribution of the neutron flux density in the Monte Carlo method.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Wagner, D. Peplow, S. Mosher, and T. Evans, “Review of hybrid (Monte Carlo/Deterministic) Radiation Transport Methods, codes, and Application at Oak Ridge National Laboratory,” Progr. Nucl. Sci. Technol., 2, 808–814 (2011).CrossRefGoogle Scholar
  2. 2.
    I. R. Suslov, I. A. Lyamtsev, and S. V. Chernov, “Hybrid method of calculation based on the CADIS variance reduction scheme,” Izv. Vyssh. Uchebn. Zaved. Yad. Energet., No. 2, 71–79 (2013).Google Scholar
  3. 3.
    MCNP – a General Monte Carlo N-Particle Transport Code, Vers. 4B, LA-12625-M (1997).Google Scholar
  4. 4.
    I. R. Suslov, “MCCG3D – 3D discrete ordinates transport code for unstructured grid/state of art and future development,” in: Neutronics-96, FEI, Obninsk (1996), p. 162.Google Scholar
  5. 5.
    J. Wagner and A. Haghighat, “Automated variance reduction of Monte Carlo shielding calculations using the discrete ordinates adjoint function,” Nucl. Sci. Eng., 128, 186–208 (1998).CrossRefGoogle Scholar
  6. 6.
    MCNP – a General Monte Carlo N-Particle Transport Code, Vol. II, User’s Guide, Vers. 5, LA (2003).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • E. A. Zemskov
    • 1
  • I. A. Lyamtsev
    • 1
  • K. G. Mel’nikov
    • 1
  • I. V. Tormyshev
    • 1
  • I. R. Suslov
    • 2
  1. 1.State Science Center of the Russian Federation – Leipunskii Institute for Physics and Power Engineering (IPPE)ObninskRussia
  2. 2.Innovation-Technology Center for Project Breakthrough (ITTsP Proryv)MoscowRussia

Personalised recommendations