Atomic Energy

, Volume 125, Issue 4, pp 244–249 | Cite as

Tritium in Nitride Fuel of Fast Reactors

  • O. A. Ustinov
  • V. A. Kashcheev
  • A. Yu. Shadrin
  • A. I. Tuchkova
  • A. A. Semenov
  • I. G. Lesina
  • A. S. Anikin

The formation of tritium in reactors, its behavior in nitride fuel and possibility of bonding with fission products, and the characteristics of migration out of the fuel-element cladding are examined. It is shown by a computational method that owing to diffusion through the steel cladding the stationary content of tritium in a fuel element is established over several hours of operation and most of the formed tritium escapes through the cladding, some being retained in it. The presence of hydrogen (tritium) in structural reactor materials in the course of operation of the reactor and thermal vibrations of the structure can significantly degrade the strength of steel structural materials. In this connection, in the BREST facility, the emphasis on the problem of catching tritium is shifted from reprocessing of spent nuclear fuel to handling the lead coolant and the gas medium in the interior of the reactor.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yu. A. Egorov, “On the radiation hazard of tritium produced in nuclear power plants,” Izv. TRGU, Ekologiya 2002 – More i Chelovek, Taganrog (2002), pp. 10–19.Google Scholar
  2. 2.
    E. Evans, Tritium and Its Compounds [Russian translation], Atomizdat, Evans (1970).Google Scholar
  3. 3.
    L. F. Belovodskii, V. K. Gaevoi, V. I. Grishmanovskii, Tritium, Energoatomizdat, Moscow (1985).Google Scholar
  4. 4.
    B. M. Andreev, A. D. Zelvenskii, and S. G. Katalnikov, Heavy Isotopes of Hydrogen in Nuclear Technology, IzdAT, Moscow (2000).Google Scholar
  5. 5.
    Radiation Safety Standards (NRB–99/2009). Sanitary Rules and Regulations SanPiN–09, Moscow (2009).Google Scholar
  6. 6.
    A. Bruggeman, W. Doyen, R. Harnie, et al., “Separation of tritium from reprocessing effluents,” in: Int. Symp. on Management of Gaseous Wastes from Nuclear Facilities, IAEA-SM-245/52, IAEA, Vienna (1980), pp. 157–173.Google Scholar
  7. 7.
    Management of Waste Containing Tritium and Carbon-14, Tech. Rep. Ser. No. 421, IAEA, Vienna (2004).Google Scholar
  8. 8.
    E. Henry, H. Schmieder, and K. H. Neeb, “LWR fuel reprocessing plants,” in: Int. Symp. on Management of Gaseous Wastes from Nuclear Facilities, IAEA-SM-245/15, IAEA, Vienna (1980), pp. 177–189.Google Scholar
  9. 9.
    R.A. Lidin, V. A. Molochko, and L. L. Andreeva, Handbook of Inorganic Chemistry in Reactions, Drofa, Moscow (2007).Google Scholar
  10. 10.
    A. I. Efimov, L. P. Belorukova, I. V. Vasilkova, et al., The Properties of Inorganic Compounds, Khimiya, Moscow (1983).Google Scholar
  11. 11.
    G. V. Samsonov, Nitrides, Naukova Dumka, Kiev (1963).Google Scholar
  12. 12.
    D. I. Ryabchikov and V. A. Ryabukhin, Analytical Chemistry of Rare-Earth Elements and Yttrium, Nauka, Moscow (1966).Google Scholar
  13. 13.
    V. I. Mikheeva and M. E. Kost, “Hydrides of rare-earth metals,” Usp. Khimii, 29, No. 1, 55–73 (1960).Google Scholar
  14. 14.
    O. E. Zvyagintsev, N. I. Kolbin, A. N. Ryabov, et al., Chemistry of Ruthenium, Nauka, Moscow (1965).Google Scholar
  15. 15.
    N. G. Primakov, V. V. Kazarnikov, and V. A. Rudenko, On the Determination of the Permeability of Hydrogen (tritium) through Metals. Part 2. Influence of Irradiation on the Hydrogen Permeability Parameters Obtained by Mass Spectrometry, Preprint IPPE-2468 (1995).Google Scholar
  16. 16.
    Yu. N. Gordienko, T. V. Kulsartov, Zh. A. Zaurbekova, et al., “Use of the method of hydrogen permeability in reactor experiments to study the interaction of hydrogen isotopes with structural materials,” Izv. Tomsk. Polytekhn. Univ. Mat. Mekh. Fizika, 324, No. 2, 149–162 (2014).Google Scholar
  17. 17.
    A. G. Glazov, V. N. Glazov, V. V. Orlov, et al., “BREST reactor and on-site nuclear fuel cycle,” At. Energ., 103, No. 1, 15–21 (2007).CrossRefGoogle Scholar
  18. 18.
    F. Reiter, К. Forcey, and G. Gervasini, A Compilation of Tritium-Material Interaction Parameters in Fusion Reactor Materials, EUR 15217 EN. ISPRA (1993).Google Scholar
  19. 19.
    I. G. Prykina, Distribution of Tritium in Metals and Alloys, Used in Facilities with a High Concentration of Tritium, and the Development of Methods for Their Detritization: Candid. Dissert. in Techn. Sci., VNIINM, Moscow (2009).Google Scholar
  20. 20.
    I. I. Chernov, M. S. Staltsov, B. A. Kalin, et al., “Some problems of hydrogen in reactor structural materials,” Perspekt. Mater., No. 4, 5–14 (2017).Google Scholar
  21. 21.
    B. A. Kustov, N. V. Pushnitsa, E. D. Demchenko, et al., “On the nature of destruction of high-strength thermomechanically strengthened reinforcing steel,” Stal, No. 6, 69–74 (1994).Google Scholar
  22. 22.
    A. P. Gulyaev and M. M. Ilchenko, “Research and improvement of the production technology of high-strength reinforcing steel 23Kh2G2T,” Stal, No. 8, 751–753 (1977).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • O. A. Ustinov
    • 1
  • V. A. Kashcheev
    • 1
  • A. Yu. Shadrin
    • 1
  • A. I. Tuchkova
    • 1
  • A. A. Semenov
    • 1
  • I. G. Lesina
    • 1
  • A. S. Anikin
    • 1
  1. 1.Bochvar High-Technology Research Institute for Inorganic Materials (VNIINM)MoscowRussia

Personalised recommendations