Advertisement

Atomic Energy

, Volume 124, Issue 4, pp 266–271 | Cite as

AEROSOL-LM/Na Aided Simulation of Fission Product Production and Transport in the First Loop of a Fast Reactor

  • M. F. Filippov
  • P. V. Kolobaeva
  • N. A. Mosunova
  • A. A. Sorokin
Article
  • 2 Downloads

The structure of models and a description of the AEROSOL-LM/Na module, which is intended for simulating the transport and behavior of impurities sodium coolant and fission product aerosols in a normal operating regime of a reactor and in beyond design basis accidents, are presented. The characteristic features of the module are: accounting for the basic behavior of dissolved impurities in the sodium coolant, simulation of the dynamics of multi-component and polydisperse aerosols in the gas cavity of the first loop of the reactor, functional coupling with other modules of the code (thermal hydraulic and fuel), and simulation of the behavior of fission products as a function of the running state of the reactor installation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. S. Zhilkin and E. P. Popov, “Simulation of the transport the radioactive products of corrosion in loops with sodium coolant,” At. Energ, 119, No. 1, 34–41 (2015).Google Scholar
  2. 2.
    A. A. Zaitsev, A. A. Kazantsev, A. A. Luk’yanov, et al., “Testing of integrated software for modeling hypothetical accidents in the BN reactor,” Izv. Vyssh. Ucheb. Zaved. Yad. Energet., No. 2, 60–70 (2015).Google Scholar
  3. 3.
    A. S. Korsun, V. N. Semenov, and S. V. Tsaun, “SOKRAT-BN aided numerical simulation of cesium precipitation in sodium loops,” Izv. Ross. Akad. Nauk. Energet., No. 4, 58–68 (2015).Google Scholar
  4. 4.
    S. A. Rogozhkin, “Numerical simulation of thermo hydraulic processes in the top chamber of a fast reactor,” At. Energ., 115, No. 5, 295–298 (2013).Google Scholar
  5. 5.
    A. Sheth, Parametric Study of Sodium Aerosols in the Cover-Gas Space of Sodium-Cooled Reactors, ANL-75-11 (1975).Google Scholar
  6. 6.
    Handbook of Chemical Hydrodynamics, Kvantum, Moscow (1996).Google Scholar
  7. 7.
    A. S. Zhilkin, S. L. Ospov, A. V. Salyaev, et al., “SOKRAT-BN aided numerical simulation of the behavior corrosion products and gaseous fission products,” Izv. Ross. Akad. Nauk. Energet., No. 3, 97–105 (2014).Google Scholar
  8. 8.
    A. A. Sorokin, “Simulation of the dynamics of fission product aerosols in the first loop,” At. Energ., 118, No. 3, 172–176 (2015).Google Scholar
  9. 9.
    A. A. Sorokin, “Simulation of the coagulation of fission product aerosols,” At. Energ., 118, No. 4, 228–232 (2015).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • M. F. Filippov
    • 1
  • P. V. Kolobaeva
    • 1
  • N. A. Mosunova
    • 1
  • A. A. Sorokin
    • 2
  1. 1.Nuclear Safety InstituteRussian Academy of Sciences (IBRAE RAN)MoscowRussia
  2. 2.Joint Institute of High TemperaturesRussian Academy of Sciences (JIHT RAS)MoscowRussia

Personalised recommendations