, Volume 62, Issue 4, pp 513–517 | Cite as

Activity of the Star bScl Observed by the TESS Space Telescope

  • I. S. SavanovEmail author

The rotational and flare activity of the chemically peculiar star B9.5IIIpHgMnSi βScl is studied using data from the archive of the TESS space mission. Rotational modulation of the brightness is clearly visible in the light curve of this star, along with two flares that have a structure typical of flares in stars of a later spectral class, with a sharp rise, a peak, and a damping stage. The constructed power spectrum has a peak corresponding to a rotation period of 1.91±0.09 days. The standard technique for analysis of the flare activity of stars based on observations from the Kepler space telescope and the TESS mission yields the energy of the radiation in the two flares. The energy emitted in the first flare was 3·1036 erg and in the second, 4.5·1035 erg. The values we have found agree with published estimates for the first flare. Arguments in favor of and against the flares taking place on βScl, rather than on a possible companion at an angular separation of 0.641 arcsec, are discussed.


stars: photometry: variability: activity: spots: flares 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. R. Ricker, J. N. Winn, R. Vanderspek, et al., SPIE Conf. Series, 9143, 20 (2014).Google Scholar
  2. 2.
    M. G. Pedersen, S. Chowdhury, C. Johnston, et al., Astrophys. J, 872, 9 (2019).ADSCrossRefGoogle Scholar
  3. 3.
    L. A. Balona, G. Handler, S. Chowdhury, et al., Mon. Not. Roy. Astron. Soc. 485, 3457 (2019).ADSCrossRefGoogle Scholar
  4. 4.
    I. S. Savanov, Astron. Rep. 62, 814 (2018).ADSCrossRefGoogle Scholar
  5. 5.
    M. Scholler, S. Correia, S. Hubrig, et al., Astron. Astrophys. 522, 85 (2010).ADSCrossRefGoogle Scholar
  6. 6.
    M. Briquet, H. Korhonen, J. F. Gonzalez, et al., Astron. Astrophys. 511, 71 (2010).ADSCrossRefGoogle Scholar
  7. 7.
    S. Hubrig, J. F. Gonzalez, I. Ilyin, et al., Astron. Astrophys. 547, 90 (2012).CrossRefGoogle Scholar
  8. 8.
    I. S. Savanov and E. S. Dmitrienko, Astron. Rep. 55, 890 (2011).ADSCrossRefGoogle Scholar
  9. 9.
    T. Shibayama, H. Maehara, S. Notsu, et al., Astrophys. J. Suppl. Ser. 209, 5 (2013).ADSCrossRefGoogle Scholar
  10. 10.
    M. N. Günther, Z. Zhan, S. Seager, et al. (2019), arXiv190100443G.Google Scholar
  11. 11.
    R. E. Gershberg, Activity of solar type in Main sequence stars, Antikva, Simferopol (2015).Google Scholar
  12. 12.
    I. S. Savanov, Astron. Rep. (to be published) (2019).Google Scholar
  13. 13.
    L. A. Balona, Mon. Not. Roy. Astron. Soc. 447, 2714 (2015).ADSCrossRefGoogle Scholar
  14. 14.
    M. G. Pedersen, V. Antoci, H. Korhonen, et al., Mon. Not. Roy. Astron. Soc. 466, 3060 (2017).ADSCrossRefGoogle Scholar
  15. 15.
    O. Kochukhov, S. J. Adelman, A. F. Gulliver, et al., Nature Physics, 3, 526 (2007).ADSCrossRefGoogle Scholar
  16. 16.
    S. Hubrig, J. F. Gonzalez, I. Savanov, et al., Mon. Not. Roy. Astron. Soc. 371, 1953 (2006).ADSCrossRefGoogle Scholar
  17. 17.
    V. Makaganiuk, O. Kochukhov, N. Piskunov, et al., Astron. Astrophys. 539, A142 (2012).CrossRefGoogle Scholar
  18. 18.
    T. Van Doorsselaere, H. Shiriati, and J. Debosscher, Astrophys. J. Suppl. Ser. 232, 26 (2017).ADSCrossRefGoogle Scholar
  19. 19.
    M. Cantiello and J. Braithwaite (2019), arXiv190402161C.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of AstronomyRussian Academy of SciencesMoscowRussia

Personalised recommendations