, Volume 61, Issue 3, pp 391–407 | Cite as

Some Cosmological Models with Negative Potentials

  • T. SinghEmail author
  • R. Chaubey
  • A. Singh

We investigate some cosmological models where the effective potential V (ϕ) may become negative for some values of field ϕ. Cosmological evolution in models with a minimum at V (ϕ) < 0 is similar in some respects to the evolution in models with potentials unbounded from below. In this case, instead of reaching an AdS regime dominated by the negative vacuum energy, the universe may reach a turning point where its energy density vanishes, and then it contracts to a singularity. In some cases such models may lead to a bounce.


Cosmological model Negative Potential Bounce 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. D. Linde: Particle Physics and Inflationary Cosmology, Harwood Academic, Switzerland, 1990.CrossRefGoogle Scholar
  2. 2.
    D. H. Lyth and A. Riotto: Phys. Rep., 314, 1-146, 1999.ADSCrossRefGoogle Scholar
  3. 3.
    A. R. Liddle and D. H. Lyth, Cosmological Inflation and Large Scale Structure, Cambrige University Press, 2000.Google Scholar
  4. 4.
    G. Fedler, A. Frolov, L. Kofman et al., LITA-2002-2004, hepth/0202017 Cosmology with Negative potentials, 2004.Google Scholar
  5. 5.
    A. D. Linde, Phys. Lett. B, 129, 177, 1983.ADSCrossRefGoogle Scholar
  6. 6.
    A. D. Linde, JHEP. 0111, 052. [arxiv: hep-th/0110195] Fast-roll Inflation, 2001.Google Scholar
  7. 7.
    A. de la Macorra, G. Germin, [arxiv: astro-ph/0212148] Cosmology for scalar fields with negative potentials and ωϕ < –1, 2002.Google Scholar
  8. 8.
    R. Kallosh, A. D. Linde, S. Prokushkin et al., arxiv: hepth/0110089, 2001.Google Scholar
  9. 9.
    G. Felder, A. Frolov, and L. Kofmani, arxiv:hep-th/0112165. warped geometry of brane worlds, 2001.Google Scholar
  10. 10.
    P. J. Steinhardt, N. Turok, arxiv:hep-th/0111030. A cyclic model of the universe, 2001.Google Scholar
  11. 11.
    J. Khoury, B. A. Ovrut, P. J. Steinhardt et al., arxiv:hep-th/0103239: The Ekpyrotic Universe: The colliding branes and the origin of hot big bang, 2001.Google Scholar
  12. 12.
    R. C. Tolman, Relativity, Thermodynamics and Cosmology. Oxford university Press., U. K, 1934.zbMATHGoogle Scholar
  13. 13.
    P. J. Steinhardt, N. Turok, Endless Universe, Doubleday, New York, 2007.Google Scholar
  14. 14.
    R. Penrose, Cycles of Time, Bodley Head, London, 2010.zbMATHGoogle Scholar
  15. 15.
    M. Gasparini and G. Veneziano, Phys. Rep., 373, 1, 2003.ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    P. H. Frampton, Did Time Begin? Will Time End, World Sci. Publishers, Singapore, 2010.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.DST-Centre for Interdisciplinary Mathematical Sciences, Institute of ScienceBanaras Hindu UniversityVaranasiIndia
  2. 2.Indian Institute of Advanced StudyShimlaIndia
  3. 3.Department of Applied MathematicsJabalpur Engineering CollegeJabalpurIndia

Personalised recommendations