, Volume 61, Issue 3, pp 354–369 | Cite as

Heating of Intergalactic Gas Near Growing Black Holes During the Hydrogen Reionization Epoch

  • E. O. VasilievEmail author
  • Yu. A. Shchekinov
  • S. K. Sethi
  • M. V. Ryabova

Black holes growing during Eddington accretion emit a large number of ultraviolet and x-ray photons which can influence the ionization and thermal state of the surrounding intergalactic gas before the onset of the hydrogen reionization epoch in the universe. This radiation heats the gas beyond the temperature of the relict radiation (cosmic microwave background CMB) TCMB (z) to a red shift z ~ 8 –12 within 0.1-3 Mpc of a black hole with initial mass ~300 M formed at z ~ 20-50 and growing with radiation efficiency ε ~ 0.15 – 0.075. The size of the gas regions in which the degree of ionization of hydrogen is higher than the residual value after recombination, i.e., greater than 10-4, approaches the same levels. More substantial heating and ionization of the gas takes place in a smaller volume. In the vicinity of 30-300 kpc, for the same black hole parameters, it is heated to above 104 K or almost an order of magnitude greater than around a black hole with almost constant mass. The radiative flux from growing black holes is sufficient for complete (above 99%) production of ionized hydrogen and doubly ionized helium within 3-10 kpc of the parent minihalo. The recombination time for hydrogen in the ionization zones surrounding the black holes exceeds the local age of the universe for z ≲ 10. These zones, which occupy several kiloparsecs, can become seeds for the next reionization of the universe. It turns out that extended regions with sizes of hundreds of kiloparsecs where radiation from growing black holes substantially changes the evolution of the intergalactic gas will radiate in the 21 cm line of atomic hydrogen, since the gas in these zones essentially remains neutral at a temperature exceeding that of the CMB.


reionization black holes accretion x-ray radiation intergalactic medium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. J. Mortlock, et al., Nature, 474, 616 (2011).ADSCrossRefGoogle Scholar
  2. 2.
    X.-B. Wu, et al., Nature, 518, 512 (2015).ADSCrossRefGoogle Scholar
  3. 3.
    Z. Haiman, in: T. Wiklind, B. Mobasher, and V. Bromm, eds., The First Galaxies, Astrophys. Space Sci. Library, 396 (2013), p. 293.Google Scholar
  4. 4.
    M. Volonteri, Science, 337, 544 (2012).ADSCrossRefGoogle Scholar
  5. 5.
    N. Yoshida, K. Omukai, and L. Hernquist, Science, 321, 669 (2008).ADSCrossRefGoogle Scholar
  6. 6.
    A. Stacy, T. H. Greif, and V. Bromm, Mon. Not. Roy. Astron. Soc. 422, 290 (2012).ADSCrossRefGoogle Scholar
  7. 7.
    S. E. Woosley and A. Heger, Very Massive Stars in the Local Universe, Astrophys. Space Sci. Library, 412, 199, (Springer International Publishing) (2015).Google Scholar
  8. 8.
    P. Madau and M. J. Rees, Astrophys. J. 551, L27 (2001).ADSCrossRefGoogle Scholar
  9. 9.
    Z. Haiman and A. Loeb, Astrophys. J. 552, 459 (2001).ADSCrossRefGoogle Scholar
  10. 10.
    M. Volonteri, F. Haardt, and P. Madau, Astrophys. J. 582, 559 (2003).ADSCrossRefGoogle Scholar
  11. 11.
    A. Loeb and F. A. Rasio, Astrophys. J. 432, 52 (1994).ADSCrossRefGoogle Scholar
  12. 12.
    S. P. Oh and Z. Haiman, Astrophys. J. 569, 558 (2002).ADSCrossRefGoogle Scholar
  13. 13.
    G. Lodato and P. Natarajan, Mon. Not. Roy. Astron. Soc. 371, 1813 (2006).ADSCrossRefGoogle Scholar
  14. 14.
    K. Inayoshi, K. Omukai, and E. Tasker, Mon. Not. Roy. Astron. Soc. 445, L109 (2014).ADSCrossRefGoogle Scholar
  15. 15.
    F. Becerra, T. H. Greif, V. Springel, et al., Mon. Not. Roy. Astron. Soc. 446, 2380 (2015).ADSCrossRefGoogle Scholar
  16. 16.
    M. A. Latif, D. R. G. Schleicher, and T. Hartwig, Mon. Not. Roy. Astron. Soc. 458, 233 (2016).ADSCrossRefGoogle Scholar
  17. 17.
    Z. Haiman, T. Abel, and M. J. Rees, Astrophys. J. 534, 11 (2000).ADSCrossRefGoogle Scholar
  18. 18.
    M. Ricotti and J. P. Ostriker, Mon. Not. Roy. Astron. Soc. 352, 547 (2004).ADSCrossRefGoogle Scholar
  19. 19.
    M. B. Eide, L. Graziani, B. Ciardi, et al., Mon. Not. Roy. Astron. Soc. 476, 1174 (2018).ADSCrossRefGoogle Scholar
  20. 20.
    M. Volonteri and M. J. Rees, Astrophys. J. 633, 624 (2005).ADSCrossRefGoogle Scholar
  21. 21.
    M. Volonteri and M. J. Rees, Astrophys. J. 650, 669 (2006).ADSCrossRefGoogle Scholar
  22. 22.
    Z. Haiman, A. A. Thoul, and A. Loeb, Astrophys. J. 464, 523 (1996).ADSCrossRefGoogle Scholar
  23. 23.
    M. Tegmark, J. Silk, M. J. Rees, et al., Astrophys. J. 474, 1 (1997).ADSCrossRefGoogle Scholar
  24. 24.
    L. Gao, S. D. M. White, A. Jenkins, et al., Mon. Not. Roy. Astron. Soc. 363, 379 (2005).ADSCrossRefGoogle Scholar
  25. 25.
    D. Whalen, T. Abel, M. L. Norman, Astrophys. J. 610, 14 (2004).ADSCrossRefGoogle Scholar
  26. 26.
    T. Kitayama, N. Yoshida, H. Susa, et al., Astrophys. J. 613, 631 (2004).ADSCrossRefGoogle Scholar
  27. 27.
    E. O. Vasiliev, E. I. Vorobyov, A. O. Razoumov, et al., Astron. Rep. 56, 564 (2012).ADSCrossRefGoogle Scholar
  28. 28.
    B. Ciardi and A. Ferrara, Spa. Sci. Rev. 116, 625 (2005).ADSCrossRefGoogle Scholar
  29. 29.
    R. Cen, Astrophys. J. Suppl. Ser. 78, 341 (1992).ADSCrossRefGoogle Scholar
  30. 30.
    S. C. O. Glover and A.-K. Jappsen, Astrophys. J. 666, 1 (2007).ADSCrossRefGoogle Scholar
  31. 31.
    M. Ricotti, N. Y. Gnedin, and J. M. Shull, Astrophys. J. 575, 33 (2002).ADSCrossRefGoogle Scholar
  32. 32.
    J. M. Shull and M. E. van Steenberg, Astrophys. J. 298, 268 (1985).ADSCrossRefGoogle Scholar
  33. 33.
    S. Seager, D. Sasselov, and D. Scott, Astrophys. J. Supll. Ser. 128, 407 (2000).ADSCrossRefGoogle Scholar
  34. 34.
    E. O. Vasiliev, Sh. K. Sethi, and Yu. A. Shchekinov, Astrophys. J., submitted (2018).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • E. O. Vasiliev
    • 1
    • 2
    Email author
  • Yu. A. Shchekinov
    • 3
    • 4
  • S. K. Sethi
    • 4
  • M. V. Ryabova
    • 5
  1. 1.Southern Federal UniversityRostov-on-DonRussia
  2. 2.Special Astrophysical ObservatoryRussian Academy of SciencesMoscowRussia
  3. 3.P. N. Lebedev Physics InstituteRussian Academy of SciencesMoscowRussia
  4. 4.Raman Research InstituteBangaloreIndia
  5. 5.Southern Federal UniversityRostov-on-DonRussia

Personalised recommendations