Advertisement

Astrophysics

, Volume 61, Issue 3, pp 310–323 | Cite as

Photometric and Spectral Studies of the Object EG And

  • I. N. Kondratyeva
  • F. K. Rspaev
  • I. V. Reva
  • M. A. Krugov
Article
  • 10 Downloads

The symbiotic object EG And consists of a giant star (M4III) and a white dwarf. Numerous studies of this object show that its light curve has two minima. There are different hypotheses regarding the source of the secondary minimum, but the problem has not yet been solved. In this paper we present data from photometric and spectral observations of EG And during 2009-2018: B, V, and R magnitudes in the Johnson system and fluxes in the Hβ and Hα emission lines. An analysis of these data showed that the emission fluxes correlate with the orbital phase. The highest fluxes are observed near the secondary minimum. At the same time, emission fluxes are still observed in the primary minimum but attenuated by roughly a factor of 7-10. This indicates that the size of the ionized zone exceeds that of the giant star. On the whole, the light curve for 2009-2018 is consistent with previous photometric data. Rapid (over a few minutes) fluctuations in the brightness of this object are detected in the V and R bands with amplitudes of ~0m.15 and 0m.35, respectively.

Keywords

variable stars symbiotic stars emission lines individual objects— EG And 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Fekel, R. Joyce, and H. Hinkle, Astron. J. 119, 1375 (2000).ADSCrossRefGoogle Scholar
  2. 2.
    A. Scopal, ASPC, 330, 463 (2005).ADSGoogle Scholar
  3. 3.
    K. Crowly and B. Espey, Astrophys. J. 675, 711 (2005).ADSCrossRefGoogle Scholar
  4. 4.
    U. Munari, Astron. Astrophys. 273, 425 (1993).ADSGoogle Scholar
  5. 5.
    S. Smith, Astrophys. J. 237, 831 (1983).ADSCrossRefGoogle Scholar
  6. 6.
    A. Scopal, D. Chochol, A. Vittone, et al., Astron. Astrophys. 245, 531 (1991).ADSGoogle Scholar
  7. 7.
    S. Kenyon and R. Michael, Astrophys. J. 152, 1 (2016).ADSGoogle Scholar
  8. 8.
    A. Skopal, T. Pribulla, M. Vanko, et al., Co Ska, 34, 45 (2004).ADSGoogle Scholar
  9. 9.
    A. Scopal, M. Vanko, T. Pribula, et al., Co Ska, 32, 62 (2002).ADSGoogle Scholar
  10. 10.
    A. Scopal, S. Shugarov, M. Vanko, et al., AN, 333, 242 (2012).ADSGoogle Scholar
  11. 11.
    C. Pereira, Astrophys. J. Suppl. Ser. 234, 35 (1996).Google Scholar
  12. 12.
    M. Vogel, Astron. Astrophys. 249, 173 (1991).ADSGoogle Scholar
  13. 13.
    R. Wilson, T. Vaccaro, Mon. Not. Roy. Astron. Soc. 291, 54 (1997).ADSCrossRefGoogle Scholar
  14. 14.
    A. Scopal, Astron. Astrophys. 366, 157 (2001).ADSCrossRefGoogle Scholar
  15. 15.
    C. Blanco and A. Mammano, Astron. Astrophys. 295, 161 (1995).ADSGoogle Scholar
  16. 16.
    Y. Ikeda and S. Tamura, Publ. Astron. Soc. Japan, 56, 353 (2004).ADSCrossRefGoogle Scholar
  17. 17.
    N. Oliversen, C. Andersen, R. Stencel, et al., Astrophys. J. 295, 620 (1985).ADSCrossRefGoogle Scholar
  18. 18.
    N. Tomov, Mon. Not. Roy. Astron. Soc. 272, 189 (1995).ADSCrossRefGoogle Scholar
  19. 19.
    J. Sokoloski, L. Bildsten, and C. Wynn, Mon. Not. Roy. Astron. Soc. 326, 553 (2001).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • I. N. Kondratyeva
    • 1
  • F. K. Rspaev
    • 1
  • I. V. Reva
    • 1
  • M. A. Krugov
    • 1
  1. 1.Fesenkov Astrophysical InstituteAlmatyKazakhstan

Personalised recommendations