Advertisement

Dead zones of classical habitability in stellar binary systems

  • 3 Accesses

Abstract

Although habitability, defined as the general possibility of hosting life, is expected to occur under a broad range of conditions, the standard scenario to allow for habitable environments is often described through habitable zones (HZs). Previous work indicates that stellar binary systems typically possess S-type or P-type HZs, with the S-type HZs forming ring-type structures around the individual stars and P-type HZs forming similar structures around both stars, if considered a pair. However, depending on the stellar and orbital parameters of the system, typically, there are also regions within the systems outside of the HZs, referred to as dead zones (DZs). In this study, we will convey quantitative information on the width and location of DZs for various systems. The results will also depend on the definition of the stellar HZs as those are informed by the planetary climate models.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Notes

  1. 1.

    See https://www.jpl.nasa.gov/missions/europa-clipper.

  2. 2.

    See https://www.nasa.gov/press-release/nasas-dragonfly-will-fly-around-titan-looking-for-origins-signs-of-life.

  3. 3.

    As pointed out in previous studies, combining constraints from both the RHZ and orbital stability limits can potentially truncate the resulting HZ for both S- and P-type orbits. Following Cuntz (2014), such truncations have been denoted as ST-type and PT-type, respectively.

  4. 4.

    See https://www.nasa.gov/tess-transiting-exoplanet-survey-satellite.

  5. 5.

    See https://www.jwst.nasa.gov.

  6. 6.

    See https://sci.esa.int/web/cheops.

  7. 7.

    See https://sci.esa.int/web/plato.

References

  1. Arney, G.N.: Astrophys. J. Lett. 873, L7 (2019)

  2. Bains, W.: Astrobiology 4, 137 (2004)

  3. Barnes, R., Jackson, B., Greenberg, R., Raymond, S.N.: Astrophys. J. Lett. 700, L30 (2009)

  4. Chabrier, G.: Publ. Astron. Soc. Pac. 115, 763 (2003)

  5. Cockell, C.S., Bush, T., Bryce, S., et al.: Astrobiology 16, 89 (2016)

  6. Cuntz, M.: Astrophys. J. 780, 14 (2014)

  7. Cuntz, M.: Astrophys. J. 798, 101 (2015)

  8. Cuntz, M., Guinan, E.F.: Astrophys. J. 827, 79 (2016)

  9. Des Marais, D.J., Nuth, J.A. III, Allamandola, L.J., et al.: Astrobiology 8, 715 (2008)

  10. Duquennoy, A., Mayor, M.: Astron. Astrophys. 248, 485 (1991)

  11. Dvorak, R.: Österr. Akad. Wiss. Math.-Nat.wiss. 191, 423 (1982)

  12. Eggenberger, A., Udry, S., Mayor, M.: Astron. Astrophys. 417, 353 (2004)

  13. Gallet, F., Charbonnel, C., Amard, L., Brun, S., Palacios, A., Mathis, S.: Astron. Astrophys. 597, A14 (2017)

  14. Heller, R., Armstrong, J.: Astrobiology 14, 50 (2014)

  15. Heller, R., Barnes, R.: Astrobiology 13, 18 (2013)

  16. Jones, B.W., Underwood, D.R., Sleep, P.N.: Astrophys. J. 622, 1091 (2005)

  17. Kaltenegger, L.: Annu. Rev. Astron. Astrophys. 55, 433 (2017)

  18. Kasting, J.F., Whitmire, D.P., Reynolds, R.T.: Icarus 101, 108 (1993)

  19. Kasting, J.F., Catling, D.: Annu. Rev. Astron. Astrophys. 41, 429 (2003)

  20. Kopparapu, R.K., Ramirez, R., Kasting, J.F., et al.: Astrophys. J. 765, 131 (2013). Erratum: Astrophys. J. 770, 82 (2013)

  21. Kopparapu, R.K., Ramirez, R.M., SchottelKotte, J., et al.: Astrophys. J. 787, L29 (2014)

  22. Kroupa, P.: Mon. Not. R. Astron. Soc. 322, 231 (2001)

  23. Kroupa, P.: Science 295, 82 (2002)

  24. Lammer, H., Bredehöft, J.H., Coustenis, A., et al.: Astron. Astrophys. Rev. 17, 181 (2009)

  25. Lingam, M., Loeb, A.: Int. J. Astrobiol. 17, 116 (2018)

  26. Mann, A.W., Gaidos, E., Ansdell, M.: Astrophys. J. 779, 188 (2013)

  27. Meadows, V.S., Reinhard, C.T., Arney, G.N., et al.: Astrobiology 18, 630 (2018)

  28. Moorman, S.Y., Quarles, B.L., Wang, Z., Cuntz, M.: Int. J. Astrobiol. 18, 79 (2019)

  29. Olson, S.L., Schwieterman, E.W., Reinhard, C.T., et al.: Astrophys. J. Lett. 858, L14 (2018)

  30. Patience, J., White, R.J., Ghez, A.M., et al.: Astrophys. J. 581, 654 (2002)

  31. Pilat-Lohinger, E., Eggl, S., Bazsó, Á.: Planetary Habitability in Binary Systems. Advances in Planetary Science, vol. 4. World Scientific, Singapore (2019)

  32. Quarles, B., Satyal, S., Kostov, V., Kaib, N., Haghighipour, N.: Astrophys. J. 856, 150 (2018)

  33. Raghavan, D., Henry, T.J., Mason, B.D., et al.: Astrophys. J. 646, 523 (2006)

  34. Raghavan, D., McAlister, H.A., Henry, T.J., et al.: Astrophys. J. Suppl. Ser. 190, 1 (2010)

  35. Ramirez, R.M.: Geosciences 8, 280 (2018)

  36. Roell, T., Neuhäuser, R., Seifahrt, A., Mugrauer, M.: Astron. Astrophys. 542, A92 (2012)

  37. Schwieterman, E.W., Kiang, N.Y., Parenteau, M.N., et al.: Astrobiology 18, 663 (2018)

  38. Seager, S., Bains, W., Petkowski, J.J.: Astrobiology 16, 465 (2016)

  39. Underwood, D.R., Jones, B.W., Sleep, P.N.: Int. J. Astrobiol. 2, 289 (2003)

  40. Wang, Z., Cuntz, M.: Astrophys. J. 873, 113 (2019a)

  41. Wang, Z., Cuntz, M.: Res. Not. Am. Astron. Soc. 3e, 70 (2019b)

  42. Williams, D.M., Pollard, D.: Int. J. Astrobiol. 1, 61 (2002)

Download references

Acknowledgements

This work has been supported by the Department of Physics, University of Texas at Arlington and the U.S. Department of Education through the Graduate Assistance in Areas of National Need (GAANN) program (S. Y. M.). Additionally, we wish to draw the reader’s attention to the online tool BinHab 2.0, created by one of us (Z. W.) and hosted at The University of Texas at Arlington. It allows the calculation of habitable regions in binary systems based on the developed method.

Author information

Correspondence to M. Cuntz.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moorman, S.Y., Wang, Z. & Cuntz, M. Dead zones of classical habitability in stellar binary systems. Astrophys Space Sci 365, 10 (2020) doi:10.1007/s10509-019-3714-x

Download citation

Keywords

  • Astrobiology
  • Binaries: general
  • Planetary systems
  • Stars: late-type