Advertisement

Astrophysics and Space Science

, 364:221 | Cite as

Inhomogeneous perturbations and stability analysis of the Einstein static universe in \(f(R,T)\) gravity

  • M. SharifEmail author
  • Arfa Waseem
Original Article
  • 67 Downloads

Abstract

The purpose of this paper is to analyze the existence of static stable Einstein universe using inhomogeneous linear perturbations in the context of \(f(R,T)\) gravity (\(R\) and \(T\) denote the scalar curvature and trace of the stress-energy tensor, respectively). The static and perturbed field equations are constructed for perfect fluid parameterized by linear equation of state parameter. We obtain solutions manifesting the Einstein static state by considering peculiar \(f(R,T)\) forms for vanishing and non-vanishing conservation of the stress-energy tensor. It is observed that stable static Einstein regions exist for both closed as well as open FLRW universe models for an appropriate choice of parameters. We conclude that this theory is efficient for presenting such cosmological solutions leading to emergent universe scenario.

Keywords

Einstein universe Stability analysis \(f(R,T)\) gravity 

Notes

Acknowledgement

One (AW) of us would like to thank the Higher Education Commission, Islamabad, Pakistan for its financial support through the Indigenous Ph.D. 5000 Fellowship Program Phase-II, Batch-III.

References

  1. Ade, P.A.R., et al.: Astron. Astrophys. 594, A13 (2016) Google Scholar
  2. Alvarenga, F.G., et al.: J. Mod. Phys. 04, 130 (2013) Google Scholar
  3. Atazadeh, K.: J. Cosmol. Astropart. Phys. 06, 020 (2014) ADSMathSciNetGoogle Scholar
  4. Barrow, J.D., Yamamoto, K.: Phys. Rev. D 85, 083505 (2012) ADSGoogle Scholar
  5. Barrow, J.D., et al.: Class. Quantum Gravity 20, L155 (2003) Google Scholar
  6. Böhmer, C.G., Lobo, F.S.N.: Phys. Rev. D 79, 067504 (2009) ADSGoogle Scholar
  7. Böhmer, C.G., Hollenstein, L., Lobo, F.S.N.: Phys. Rev. D 76, 084005 (2007) ADSMathSciNetGoogle Scholar
  8. Böhmer, C.G., Tamanini, N., Wright, M.: Phys. Rev. D 92, 124067 (2015) ADSMathSciNetGoogle Scholar
  9. Capozziello, S.: Int. J. Mod. Phys. D 483, 11 (2002) Google Scholar
  10. Deb, D., et al.: Mon. Not. R. Astron. Soc. 485, 5652 (2019) ADSGoogle Scholar
  11. Eddington, A.S.: Mon. Not. R. Astron. Soc. 90, 668 (1930) ADSGoogle Scholar
  12. Ellis, G.F.R., Maartens, R.: Class. Quantum Gravity 21, 223 (2004) ADSGoogle Scholar
  13. Ellis, G.F.R., Murugan, J., Tsagas, C.G.: Class. Quantum Gravity 21, 233 (2004) ADSGoogle Scholar
  14. Gasperini, M., Veneziano, G.: Phys. Rep. 373, 1 (2003) ADSMathSciNetGoogle Scholar
  15. Gergely, L.Á., Maartens, R.: Class. Quantum Gravity 19, 213 (2002) ADSGoogle Scholar
  16. Goswami, R., Goheer, N., Dunsby, P.K.S.: Phys. Rev. D 78, 044011 (2008) ADSMathSciNetGoogle Scholar
  17. Harko, T., Lobo, F.S.N.: Extensions of \(f(R)\) Gravity: Curvature-Matter Couplings and Hybrid Metric-Palatini Theory. Cambridge University Press, Cambridge (2019) zbMATHGoogle Scholar
  18. Harko, T., et al.: Phys. Rev. D 84, 024020 (2011) ADSGoogle Scholar
  19. Harrison, E.R.: Rev. Mod. Phys. 39, 862 (1967) ADSGoogle Scholar
  20. Huang, H., Wu, P., Yu, H.: Phys. Rev. D 89, 103521 (2014) ADSGoogle Scholar
  21. Huang, H., Wu, P., Yu, H.: Phys. Rev. D 91, 023507 (2015) ADSMathSciNetGoogle Scholar
  22. Jamil, M., Momeni, D., Myrzakulov, R.: Chin. Phys. Lett. 29, 109801 (2012) Google Scholar
  23. Khoury, J., Steinhardt, P.J., Turok, N.: Phys. Rev. Lett. 92, 031302 (2004) ADSGoogle Scholar
  24. Landau, L.D., Lifshitz, E.M.: The Classical Theory of Fields. Pergamon Press, Elmsford (1971) zbMATHGoogle Scholar
  25. Li, J.T., Lee, C.C., Geng, C.Q.: Eur. Phys. J. C 73, 2315 (2013) ADSGoogle Scholar
  26. Maurya, S.K., et al.: Phys. Rev. D 100, 044014 (2019) ADSMathSciNetGoogle Scholar
  27. Moraes, P.H.R.S.: Eur. Phys. J. C 75, 168 (2015) ADSMathSciNetGoogle Scholar
  28. Mulryne, D.J., et al.: Phys. Rev. D 71, 123512 (2005) ADSGoogle Scholar
  29. Nojiri, S., Odintsov, S.D.: Phys. Rev. D 68, 123512 (2003) ADSGoogle Scholar
  30. Noureen, I., Zubair, M.: Eur. Phys. J. C 75, 62 (2015) ADSGoogle Scholar
  31. Seahra, S.S., Böhmer, C.G.: Phys. Rev. D 79, 064009 (2009) ADSMathSciNetGoogle Scholar
  32. Shabani, H., Farhoudi, M.: Phys. Rev. D 88, 044048 (2013) ADSGoogle Scholar
  33. Shabani, H., Ziaie, A.H.: Eur. Phys. J. C 77, 31 (2017) ADSGoogle Scholar
  34. Sharif, M., Ikram, A.: Int. J. Mod. Phys. D 26, 1750084 (2017) ADSGoogle Scholar
  35. Sharif, M., Ikram, A.: Astrophys. Space Sci. 363, 178 (2018) ADSGoogle Scholar
  36. Sharif, M., Ikram, A.: Eur. Phys. J. Plus 26, 1750084 (2019) Google Scholar
  37. Sharif, M., Siddiqa, A.: Int. J. Mod. Phys. D 27, 1850065 (2018) ADSGoogle Scholar
  38. Sharif, M., Waseem, A.: Gen. Relativ. Gravit. 50, 78 (2018a) ADSGoogle Scholar
  39. Sharif, M., Waseem, A.: Eur. Phys. J. C 50, 78 (2018b) Google Scholar
  40. Sharif, M., Waseem, A.: Mod. Phys. Lett. A 33, 1850216 (2018c) ADSGoogle Scholar
  41. Sharif, M., Waseem, A.: Eur. Phys. J. Plus 133, 160 (2018d) Google Scholar
  42. Sharif, M., Waseem, A.: Int. J. Mod. Phys. D 28, 1950033 (2019a) ADSGoogle Scholar
  43. Sharif, M., Waseem, A.: Astrophys. Space Sci. 364, 189 (2019b) ADSGoogle Scholar
  44. Sharif, M., Zubair, M.: J. Cosmol. Astropart. Phys. 03, 028 (2012) ADSGoogle Scholar
  45. Sharif, M., Zubair, M.: J. Exp. Theor. Phys. 117, 248 (2013a) ADSGoogle Scholar
  46. Sharif, M., Zubair, M.: J. Phys. Soc. Jpn. 82, 014002 (2013b) ADSGoogle Scholar
  47. Sharif, M., Zubair, M.: Gen. Relativ. Gravit. 46, 1723 (2014a) ADSGoogle Scholar
  48. Sharif, M., Zubair, M.: Astrophys. Space Sci. 349, 457 (2014b) ADSGoogle Scholar
  49. Sharif, M., Rani, S., Myrzakulov, R.: Eur. Phys. J. Plus 128, 123 (2013) Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of the PunjabLahorePakistan

Personalised recommendations