Advertisement

Astrophysics and Space Science

, 364:222 | Cite as

Structure of photosphere under high resolution: granules, faculae, micropores, intergranular lanes

  • A. A. Solov’evEmail author
  • L. D. Parfinenko
  • V. I. Efremov
  • E. A. Kirichek
  • O. A. Korolkova
Original Article
  • 49 Downloads

Abstract

The fundamental small-scale structures such as granules, faculae, micropores that are observed in the solar photosphere under high resolution are discussed. As a separate constituent of the fine structure, a continuous net of dark intergranular lanes is considered. The results due to image processing of micropores and facular knots obtained on modern adaptive optics telescopes are presented. For intergranular lanes and micropores, a steady-state magnetic diffusion model is proposed, in which the horizontal-vertical plasma flows converging to a intergranular lane (and to the body of a micropore) compensate for the dissipative spreading of the magnetic flux at a given scale. A theoretical estimate of the characteristic scales of these structures in the photosphere is obtained as 20–30 km for the thickness of dark intergranular lanes (and the diameter of the thinnest magnetic tube in the solar photosphere), 200–400 km for the diameter of micropores. A model of a facular knot with the darkening core on the axis, which physically represents a micropore, stabilizing the entire magnetic configuration over a time interval of up to 1 day, is briefly described.

Keywords

Sun Photosphere Magnetic field Granules Micropores Faculae Intergranular lanes 

Notes

Acknowledgements

We are grateful to the teams of Goode Solar Telescope (Big Bear Solar Observatory) and Swedish 1-meter Solar Telescope (SST) for allowing us to use the observational data. We thank the referee of the article for helpful and well-meaning comments.

This work was supported by the Russian National Science Foundation (project 15-12-20001), the Russian Foundation for Basic Research (project 18-02-00168) and the Program KP19-270.

References

  1. Abdusamatov, H.I., Krat, V.A.: Magnetic “knots” in the solar photosphere. Sol. Phys. 9(2), 420–422 (1969) ADSCrossRefGoogle Scholar
  2. Anđić, A.: A small pore observed with a 1.6 m telescope. Sol. Phys. 282(2), 443–451 (2013).  https://doi.org/10.1007/s11207-012-0137-z ADSCrossRefGoogle Scholar
  3. Anđić, A., et al.: Response of granulation to small-scale bright features in the Quiet Sun. Astrophys. J. 731(1), 29 (2011).  https://doi.org/10.1088/0004-637X/731/1/29. ADSCrossRefGoogle Scholar
  4. Avrett, E.H., Loeser, R.: Models of the solar chromosphere and transition region from sumer and HRTS observations: formation of the extreme-ultraviolet spectrum of hydrogen, carbon and oxygen. Astrophys. J. Suppl. Ser. 175, 229–276 (2008) ADSCrossRefGoogle Scholar
  5. Barthol, P., Chares, B., Deutsch, W.: High resolution imaging and polarimetry with SUNRISE, a balloon-borne stratospheric solar observatory. In: 38th COSPAR Scientific Assembly, 18–15 July 2010, Bremen, Germany, p. 16 (2010) Google Scholar
  6. Berger, T.E., Title, A.M.: Recent progress in high-resolution observations. In: Sakurai, T., Sekii, T. (eds.) The Solar-B Mission and the Forefront of Solar Physics, Proceedings of the Fifth Solar-B Science Meeting, 12–14 November, 2003, Roppongi, Tokyo, Japan. ASP Conference Series, vol. 325, p. 95. Astronomical Society of the Pacific, San Francisco (2004) Google Scholar
  7. Berger, T.E., Rouppe van der Voort, L., Löfdahl, M.: Contrast analysis of solar faculae and magnetic bright points. Astrophys. J. 661(2), 1272–1288 (2007).  https://doi.org/10.1086/517502 ADSCrossRefGoogle Scholar
  8. Blanco Rodríguez, J., Okunev, O.V., Puschmann, K.G., Kneer, F., Sánchez-Andrade Nuño, B.: On the properties of faculae at the poles of the Sun. Astron. Astrophys. 474(1), 251–259 (2007).  https://doi.org/10.1051/0004-6361:20077739 ADSCrossRefGoogle Scholar
  9. Botygina, O., Gordovskyy, M., Lozitsky, V.: Estimations of the flux tube diameters outside sunspots using Hinode observations. Preliminary results. Adv. Astron. Space Phys. 6, 20–23 (2016) ADSCrossRefGoogle Scholar
  10. Botygina, O., Gordovskyy, M., Lozitsky, V.: Investigation of spatially unresolved magnetic field outside sunspots using HINODE/SOT observations. In: Astroinformatics, Proc. Intern. Astr. Union, IAU Symp. vol. 325, pp. 59–62 (2017) Google Scholar
  11. De Pontieu, B., Carlsson, M., Stein, R., et al.: Rapid temporal variability of faculae: high-resolution observations and modeling. Astrophysics 646, 1405–1420 (2006).  https://doi.org/10.1086/505074 CrossRefGoogle Scholar
  12. Dunn, R.B., Zirker, J.B.: The solar filigree. Sol. Phys. 33(2), 281–304 (1973).  https://doi.org/10.1007/BF00152419 ADSCrossRefGoogle Scholar
  13. Grossmann-Doerth, U., Knoelker, M., Schuessler, M., Solanki, S.K.: The deep layers of solar magnetic elements. Astron. Astrophys. 285, 648–654 (1994) ADSGoogle Scholar
  14. Hirzberger, J., Wiehr, E.: Solar limb faculae. Astron. Astrophys. 438(3), 1059–1065 (2005).  https://doi.org/10.1051/0004-6361:20052789 ADSCrossRefGoogle Scholar
  15. Homann, T., Kneer, F., Makarov, V.I.: Spectro-polarimetry of polar faculae. Sol. Phys. 175, 81 (1997).  https://doi.org/10.1023/A:1004971002384 ADSCrossRefGoogle Scholar
  16. Ikhsanov, R.N., Parfinenko, L.D., Efremov, V.I.: On the organization of fine structure of the solar photosphere. Sol. Phys. 170, 205–215 (1997).  https://doi.org/10.1023/A:1004983810664 ADSCrossRefGoogle Scholar
  17. Keller, C.U., et al.: On the origin of solar faculae. Astrophys. J. 607(1), L59–L62 (2004).  https://doi.org/10.1086/421553 ADSCrossRefGoogle Scholar
  18. Knoelker, M., Schuessler, M., Weisshaar, E.: Model calculations of magnetic flux tubes. III—Properties of solar magnetic elements. Astron. Astrophys. 194(1–2), 257–267 (1988) ADSGoogle Scholar
  19. Kobel, P., Hirzberger, J., Solanki, S.K., Gandorfer, A., Zakharov, V.: Discriminant analysis of solar bright points and faculae. I. Classification method and center-to-limb distribution. Astron. Astrophys. 502(1), 303–314 (2009).  https://doi.org/10.1051/0004-6361/200811117 ADSCrossRefGoogle Scholar
  20. Kobel, P., Solanki, S.K., Borrero, J.M.: The continuum intensity as a function of magnetic field. I. Active region and quiet Sun magnetic elements. Astron. Astrophys. 531, A112 (2011).  https://doi.org/10.1051/0004-6361/201016255 ADSCrossRefGoogle Scholar
  21. Krat, V.A., Dulkin, L.Z., Karpinsky, V.N., et al.: The third flight of the Soviet stratospheric solar observatory. Astron. Tsirkulyar 597, 1–3 (1970) ADSGoogle Scholar
  22. Krat, V.A., Dul’kin, L.Z., Validov, M.A., et al.: The fourth flight of the Soviet stratospheric solar observatory. Astron. Tsirkulyar 807, 1–3 (1974) ADSGoogle Scholar
  23. Libbrecht, K.G., Kuhn, J.R.: A new measurement of the facular contrast near the solar limb. Astrophys. J. 277, 889–896 (1984).  https://doi.org/10.1086/161759 ADSCrossRefGoogle Scholar
  24. Lites, B.W., Scharmer, G.B., Berger, T.E., Title, A.M.: Three-dimensional structure of the active region photosphere as revealed by high angular resolution. Sol. Phys. 221(1), 65–84 (2004).  https://doi.org/10.1023/B:SOLA.0000033355.24845.5a ADSCrossRefGoogle Scholar
  25. Makarov, V.I., Sivaraman, K.R.: New results concerning the global solar cycle. Sol. Phys. 123, 367–380 (1989).  https://doi.org/10.1007/BF00149112 ADSCrossRefGoogle Scholar
  26. Makarov, V.I., Tlatov, A.G., Sivaraman, K.R.: Duration of polar activity cycles and their relation to sunspot activity. Sol. Phys. 214, 41 (2003).  https://doi.org/10.1023/A:1024003708284 ADSCrossRefGoogle Scholar
  27. Muller, R.: The fine structure of the quiet Sun. Sol. Phys. 100(1&2), 237 (1985).  https://doi.org/10.1007/BF00158430 ADSCrossRefGoogle Scholar
  28. Narayan, G., Scharmer, B.: Small-scale convection signatures associated with a strong plage solar magnetic field. Astron. Astrophys. 524, A3 (2010).  https://doi.org/10.1051/0004-6361/201014956 ADSCrossRefGoogle Scholar
  29. Obridko, V.N.: Sunspots and Activity Complexes. Izdatel’stvo Nauka, Moscow (1985). 256 pp., in Russian Google Scholar
  30. Okunev, O.V., Kneer, F.: On the structure of polar faculae on the Sun. Astron. Astrophys. 425, 321–331 (2004).  https://doi.org/10.1051/0004-6361:20041120 ADSCrossRefGoogle Scholar
  31. Okunev, O.V., Kneer, F.: Numerical modeling of solar faculae close to the limb. Astron. Astrophys. 439, 323–334 (2005).  https://doi.org/10.1051/0004-6361:20052879 ADSCrossRefGoogle Scholar
  32. Rachkovsky, D.N., Tsap, T.T., Lozitsky, V.G.: Small-scale magnetic field diagnostics outside sunspots: comparison of different methods. J. Astrophys. Astron. 26(4), 435–445 (2005).  https://doi.org/10.1007/BF02702449 ADSCrossRefGoogle Scholar
  33. Rast, M.P.: The scales of granulation, mesogranulation and supergranulation. Astrophys. J. 597, 1200–1210 (2003) ADSCrossRefGoogle Scholar
  34. Riehokainen, A., Strekalova, P., Solov’ev, A., Smirnova, V., Zhivanovich, I., Moskaleva, A., Varun, N.: Long quasi-periodic oscillations of the faculae and pores. Astron. Astrophys. 627, A10 (2019).  https://doi.org/10.1051/0004-6361/201935629. ADSCrossRefGoogle Scholar
  35. Rimmele, T.R., Marino, J.: Solar adaptive optics. Living Rev. Sol. Phys. 8(1), 2 (2011).  https://doi.org/10.12942/lrsp-2011-2 ADSCrossRefGoogle Scholar
  36. Scharmer, G.B., Dettori, P.M., Lofdahl, M.G., Shand, M.: Adaptive optics system for the new Swedish solar telescope. In: Keil, S.L., Avakyan, S.V. (eds.) Innovative Telescopes and Instrumentation for Solar Astrophysics. Proceedings of the SPIE, vol. 4853, pp. 370–380 (2003).  https://doi.org/10.1117/12.460387 CrossRefGoogle Scholar
  37. Schatten, K.H., Mayr, H.G., Omidvar, K., Maier, E.: A hillock and cloud model for faculae. Astrophys. J. 311, 460 (1986).  https://doi.org/10.1086/164786 ADSCrossRefGoogle Scholar
  38. Schlichenmaier, R., von der Lühe, O., Hoch, S., Soltau, D.: Active region fine structure observed at 0.08 arcsec resolution. Astron. Astrophys. 596, A7 (2016).  https://doi.org/10.1051/0004-6361/201628561 CrossRefGoogle Scholar
  39. Schmidt, W., et al.: In: Rimmele, T., Tritschler, A., Wöger, F., Collados, V., Socos-Navarro, H., Schlichenmaier, R., Carlsson, M., Berger, T., Cadavid, A., Gilbert, P., Goode, P., Knölker, M. (eds.) The GREGOR Solar Telescope on Tenerife, the Second ATST-EAST Meeting: Magnetic Fields from the Photosphere to the Corona. ASP Conference Proceedings, vol. 463, p. 365. Astronomical Society of the Pacific, San Francisco (2012) Google Scholar
  40. Sinha, K., Tripathi, B.M.: Evolution of sunspots seen in molecular lines. I, II. Bull. Astron. Soc. India 19, 13–36 (1991). ISSN 0304-9523 ADSGoogle Scholar
  41. Solanki, S.K.: Small-scale solar magnetic fields—an overview. Space Sci. Rev. 63(1–2), 1–188 (1993).  https://doi.org/10.1007/BF00749277 ADSCrossRefGoogle Scholar
  42. Solov’ev, A.A., Kirichek, E.A.: Analytical model of an asymmetric sunspot with a steady plasma flow in its penumbra. Sol. Phys. 291(6), 1647–1663 (2016).  https://doi.org/10.1007/s11207-016-0922-1 ADSCrossRefGoogle Scholar
  43. Solov’ev, A.A., Kirichek, E.A.: Structure of solar faculae. Mon. Not. R. Astron. Soc. 482(4), 5290–5301 (2019).  https://doi.org/10.1093/mnras/sty3050 ADSCrossRefGoogle Scholar
  44. Spruit, H.C.: Pressure equilibrium and energy balance of small photospheric flux tubes. Sol. Phys. 50, 269–295 (1976).  https://doi.org/10.1007/BF00155292 ADSCrossRefGoogle Scholar
  45. Steiner, O.: Recent progresses in the physics of small-scale magnetic fields. In: Danesy, D., Poedts, S., De Groof, A., Andries, J. (eds.) Proceedings of the 11th European Solar Physics Meeting. The Dynamic Sun: Challenges for Theory and Observations, ESA SP-600, Leuven, Belgium (2005). 2005ESASP.600E..10S Google Scholar
  46. Stenflo, J.O.: Magnetic-field structure of the photospheric network. Sol. Phys. 32, 41–63 (1973).  https://doi.org/10.1007/BF00152728 ADSCrossRefGoogle Scholar
  47. Stenflo, J.O.: Scaling laws for magnetic fields on the quiet Sun. Astron. Astrophys. 541, A17 (2012).  https://doi.org/10.1051/0004-6361/201218939 ADSCrossRefGoogle Scholar
  48. Stenflo, J.O.: History of solar magnetic fields since George Ellery Hale. Space Sci. Rev. 210(1–4), 5–35 (2017).  https://doi.org/10.1007/s11214-015-0198-z ADSCrossRefGoogle Scholar
  49. Steshenko, N.V.: Bull. Crimean Astrophys. Obs. 37, 21–28 (1967) Google Scholar
  50. Title, A.M., Topka, K.P., Tarbell, T.D., Schmidt, W., Balke, C., Scharmer, G.: On the differences between plage and quiet sun in the solar photosphere. Astrophys. J. 393(2), 782–794 (1992).  https://doi.org/10.1086/171545. Part 1. ISSN 0004-637X ADSCrossRefGoogle Scholar
  51. Topka, K.P., Tarbell, T.D., Title, A.M.: Properties of the smallest solar magnetic elements. II. Observations versus hot wall models of faculae. Astrophys. J. 484(1), 479–486 (1997).  https://doi.org/10.1086/304295 ADSCrossRefGoogle Scholar
  52. Van Noort, M., Rouppe van der Voort, L., Löfdahl, M.G.: Solar image restoration by use of multi-frame blind de-convolution with multiple objects and phase diversity. Sol. Phys. 228, 191 (2005).  https://doi.org/10.1007/s11207-005-5782-z ADSCrossRefGoogle Scholar
  53. Viticchié, B., Sánchez Almeida, J., Del Moro, D., Berrilli, F.: Interpretation of HINODE SOT/SP asymmetric Stokes profiles observed in the quiet Sun network and internetwork. Astron. Astrophys. 526, A60 (2011).  https://doi.org/10.1051/0004-6361/201015391 CrossRefGoogle Scholar
  54. Wang, H., Zirin, H.: The contrast of faculae near the solar limb. Sol. Phys. 110(2), 281–293 (1987).  https://doi.org/10.1007/BF00206424. ISSN 0038-0938 ADSCrossRefGoogle Scholar
  55. Wiehr, E.: A unique magnetic field range for nonspot solar magnetic regions. Astron. Astrophys. 69, 279–284 (1978) ADSGoogle Scholar
  56. Wöger, F., von der Luhe, O., Reardon, K.: Speckle interferometry with adaptive optics corrected solar data. Astron. Astrophys. 488, 375 (2008).  https://doi.org/10.1051/0004-6361:200809894 ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • A. A. Solov’ev
    • 1
    • 2
    Email author
  • L. D. Parfinenko
    • 1
  • V. I. Efremov
    • 1
  • E. A. Kirichek
    • 1
  • O. A. Korolkova
    • 1
  1. 1.Central (Pulkovo) Astronomical ObservatoryRussian Academy of SciencesSt. PetersburgRussian Federation
  2. 2.Kalmyk State UniversityElistaRussia

Personalised recommendations