Advertisement

Astrophysics and Space Science

, 364:215 | Cite as

Dry mass optimization for the impulsive transfer trajectory of a near-Earth asteroid sample return mission

  • Jingyi Liu
  • Jianhua Zheng
  • Mingtao LiEmail author
Original Article
  • 38 Downloads

Abstract

Asteroid sample return missions are an area of active research for deep space exploration. Trajectory optimization for near-Earth asteroid sample return missions with chemical propulsion is studied in this paper. In previous studies, minimizing the velocity increment was usually used as the optimization objective. This paper focuses on the optimization of the spacecraft dry mass, aiming to reasonably coordinate the lifting capability of the launch vehicle and the maneuvering capability of deep space probes. A multi-objective optimization model is proposed to find a Pareto-optimal solution for the maximization of the spacecraft dry mass and minimization of the transfer time, considering both impulsive maneuvers and gravity-assist maneuvers. Compared with the results of the previous optimization model to minimize the velocity increment, the simulation results show that solutions with a much higher spacecraft dry mass can be obtained, and hence, the group of feasible asteroid targets is enlarged. Multi-objective optimization of the spacecraft dry mass and transfer time can effectively redistribute the time for trajectory transfer and time available on asteroids, making mission design much more flexible.

Keywords

Near-Earth asteroids Transfer trajectory Gravity assist Target selection Multi-objective optimization 

Notes

Acknowledgements

This research was supported by the Science and Major Project of Beijing (Z181100002918004) and the Fund Projects of Space Science Priority Research Program (XDA1502030502).

References

  1. Bao, C.C., Yang, H.W., et al.: Capturing near-earth asteroids into bounded earth orbits using gravity assist. Astrophys. Space Sci. 360(2), 61 (2015).  https://doi.org/10.1007/s10509-015-2581-3 ADSCrossRefGoogle Scholar
  2. Barucci, M.A., et al.: MarcoPolo-R near earth asteroid sample return mission. Exp. Astron. 33(2–3), 645–684 (2012).  https://doi.org/10.1007/s10686-011-9231-8 ADSCrossRefGoogle Scholar
  3. Christou, A.A.: The statistics of flight opportunities to accessible near-Earth asteroids. Planet. Space Sci. 51(3), 221–231 (2003).  https://doi.org/10.1016/s0032-0633(02)00199-x ADSCrossRefGoogle Scholar
  4. Cui, P.Y., Qiao, D., Cui, H.T., Luan, E.J.: Target selection and transfer trajectories design for exploring asteroid mission. Sci. China Ser. E, Technol. Sci. 53(4), 1150–1158 (2010).  https://doi.org/10.1007/s11431-010-0007-6 CrossRefzbMATHGoogle Scholar
  5. Deb, K., Agrawal, S., Pratap, A., et al.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-\(\mathrm{II}\). In: Parallel problem solving from nature PPSN VI, pp. 849–858. Springer, Berlin (2000) CrossRefGoogle Scholar
  6. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Boston, MA (1989) zbMATHGoogle Scholar
  7. Hollenbeck, G.: New Flight Techniques for Outer Planet Missions. In: AIAA/AAS Astrodynamics Specialist Conference, Nassau, Bahamas (1975). AAS Paper 75-087 Google Scholar
  8. Hulkower, N.D., Lau, C.O., Bender, D.F.: Optimum two-impulse transfers for preliminary interplanetary trajectory design. J. Guid. Control Dyn. 7(4), 458–461 (1984).  https://doi.org/10.2514/3.19878 ADSCrossRefGoogle Scholar
  9. Izzo, D., Hennes, D., Riccardi, A.: Constraint handling and multi-objective methods for the evolution of interplanetary trajectories. J. Guid. Control Dyn. 38(4), 792–800 (2015).  https://doi.org/10.2514/1.G000619 ADSCrossRefGoogle Scholar
  10. Lei, H., Xu, B., Zhang, L.: Trajectory design for a rendezvous mission to Earth’s Trojan asteroid 2010 TK7. Adv. Space Res. 60(11), 2505–2517 (2017).  https://doi.org/10.1016/j.asr.2017.09.020. ISSN 0273-1177 ADSCrossRefGoogle Scholar
  11. Luo, Y.Z., Tang, G.J., Parks, G.: Multi-Objective Optimization of Perturbed Impulsive Rendezvous Trajectories Using Physical Programming. J. Guid. Control Dyn. 31(6), 1829–1832 (2008).  https://doi.org/10.2514/1.35409 ADSCrossRefGoogle Scholar
  12. Martin, E., et al.: Ultra-low Delta-v Objects and the Human Exploration of Asteroids. Planet. Space Sci. 59(13), 1408–1412 (2011).  https://doi.org/10.1016/j.pss.2011.05.006 CrossRefGoogle Scholar
  13. Mereta, A., Izzo, D.: Target selection for a small low-thrust mission to near-Earth asteroids. Astrodynamics 2(3), 249–263 (2018).  https://doi.org/10.1007/s42064-018-0024-y CrossRefGoogle Scholar
  14. Perozzi, E., Rossi, A., Valsecchi, G.B.: Basic targeting strategies for rendezvous and flyby missions to the near-Earth asteroids. Planet. Space Sci. 49(1), 3–22 (2001).  https://doi.org/10.1016/s0032-0633(00)00124-0 ADSCrossRefGoogle Scholar
  15. Prussing, J.E., Conway, B.A.: Orbital Mechanics. Oxford University Press, New York (2013) zbMATHGoogle Scholar
  16. Sarli, B., Tsuda, Y.: Hayabusa 2 extension plan: Asteroid selection and trajectory design. Acta Astronaut. 138, 225–232 (2017).  https://doi.org/10.1016/j.actaastro.2017.05.016 ADSCrossRefGoogle Scholar
  17. Sarli, B.V., Horikawa, M., Yam, C.H., Kawakatsu, Y., Yamamoto, T.: Destiny+ trajectory design to (3200) phaethon. J. Astronaut. Sci. 65(1), 82–110 (2018).  https://doi.org/10.1007/s40295-017-0117-5 ADSCrossRefGoogle Scholar
  18. Schlueter, M., Yam, C.H., Watanabe, T., Oyama, A.: Many-objective optimization of interplanetary space mission trajectories. In: 2015 IEEE Congress on Evolutionary Computation (CEC). IEEE (2015).  https://doi.org/10.1109/CEC.2015.7257297 CrossRefGoogle Scholar
  19. Staugler, A.J.: Trajectory options for low-cost missions to asteroids. Acta Astronaut. 41(11), 731–737 (1997).  https://doi.org/10.1016/S0094-5765(98)00003-4 ADSCrossRefGoogle Scholar
  20. Taylor, A., McDowell Jonathan, C., Elvis, M.: A Delta-V map of the known Main Belt Asteroids. Acta Astronaut. 146(146), 73–82 (2018).  https://doi.org/10.1016/j.actaastro.2018.02.014 ADSCrossRefGoogle Scholar
  21. Vallado, D.A.: Fundamentals of Astrodynamics and Applications. Microcosm Press, Lansing, KS (2013) zbMATHGoogle Scholar
  22. Venditti, F.C.F., Rocco, E.M., Prado, A.F.B.D.A., Suhkanov, A.: Gravity-assisted maneuvers applied in the multi-objective optimization of interplanetary trajectories. Acta Astronaut. 67(9–10), 1255–1271 (2010).  https://doi.org/10.1016/j.actaastro.2010.06.022 ADSCrossRefGoogle Scholar
  23. Williams, B., Antreasian, P., Carranza, E., Jackman, C., Leonard, J., Nelson, D., et al.: Osiris-rex flight dynamics and navigation design. Space Sci. Rev. 214(4), 69 (2018).  https://doi.org/10.1007/s11214-018-0501-x ADSCrossRefGoogle Scholar
  24. Yang, H., Li, J., Baoyin, H.: Low-cost transfer between asteroids with distant orbits using multiple gravity assists. Adv. Space Res. 56(5), 837–847 (2015).  https://doi.org/10.1016/j.asr.2015.05.013 ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.University of Chinese Academy of SciencesBeijingChina
  2. 2.National Space Science CenterChinese Academy of SciencesBeijingChina

Personalised recommendations