Astrophysics and Space Science

, 364:216 | Cite as

Low-latitude ionospheric response from GPS, IRI and TIE-GCM TEC to Solar Cycle 24

  • S. S. Rao
  • Monti Chakraborty
  • Sanjay Kumar
  • A. K. SinghEmail author
Original Article


In the present study inter-comparison of Total Electron Content (TEC) derived from the Global Positioning System, the International Reference Ionosphere (IRI-2016) model and the Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM) during Solar Cycle 24 has been carried out. The short- and long-term variabilities in TEC have been assessed by using spectral, regression and statistical analysis. To ascertain the quiet-time climatology, TEC data have been used after filtering out the solar flares and geomagnetic storms effects. The present analysis exhibits a double-hump structure and clockwise hysteresis in TEC as regards Solar Cycle 24. The solar flux and TEC trend are found to be irregularly and slow during the rise and smooth and quick during the fall period of Solar Cycle 24. Seasonally, the semiannual anomaly is found to be a consistent feature for all phases of the solar cycle, while the winter anomaly seems to be facilitated with a level of solar activity during solstices. Another purpose of the present work is to investigate the performance of IRI-2016 and the TIE-GCM 2.0 models in comparison with GPS-TEC during Solar Cycle 24. Almost perfect agreement is found between observed and modeled TEC, delineating similar trends of the solar cycle, and of semiannual and seasonal variations. Nevertheless, significant biases are apparent between the observed and modeled TEC in terms of local time, seasons and phases of solar activity. Our results show the error in the model estimations in noontime TEC, which is as high as 100% in the IRI model and as low as 60% in the TIE-GCM model. Thus, in general, the IRI model overestimates the noon time TEC values, while TIE-GCM underestimates them.


Solar Cycle-24 Solar hysteresis GPS-TEC TIE-GCM IRI-2016 Ionospheric anomalies 



This work is sponsored by UGC-New Delhi under Dr. DS Kothari Postdoctoral Fellowship scheme awarded to author SS Rao vide sanction No. 4-2/2006(BSR)/ES/17-18/0048. The work is partially supported by ISRO, Bangalore, under ISRO-SSPS program. The authors are thankful to the Community Coordinated Modeling Center, NASA for providing TIE-GCM and IRI data. Authors are thankful to Dr. Shim, Ja Soon (in-house scientist) and Anne Michelle Mendoza (Runs-On-Request Coordinator) from CCMC, NASA for considering our special request to run TIE-GCM model and timely providing model runs. The authors also thankful to the Space Physics Data Facility (SPDF) OmniWeb for solar flux data and the World Wide Data center (WDC) for the Ap index data. The authors are thankful to Professor R.P. Singh, Department of Physics, BHU, Varanasi, India, for suggestions.


  1. Acharya, R., Majumdar, S.: Comparison of observed ionospheric vertical TEC over the sea in Indian region with IRI-2016 model. Adv. Space Res. 63(6), 1892–1904 (2019). ADSCrossRefGoogle Scholar
  2. Adebiyi, S.J., Adimula, I.A., Oladipo, O.A.: Characterisation of GPS-TEC in the African equatorial and low-latitude region and the regional evaluation of the IRI model. J. Atmos. Terr. Phys. 143–144, 53–70 (2016). ADSCrossRefGoogle Scholar
  3. Afraimovich, E.L., Astafyeva, E.I., Oinats, A.V., Yasukevich, Y.V., Zhivetiev, I.V.: Global electron content: a new conception to track solar activity. Ann. Geophys. 26, 335–344 (2008). ADSCrossRefGoogle Scholar
  4. Akala, A.O., Seemala, G.K., Doherty, P.H., Valladares, C.E., Carrano, C.S., Espinoza, J., Oluyo, S.: Comparison of equatorial GPS-TEC observations over an African station and an American station during the minimum and ascending phases of Solar Cycle-24. Ann. Geophys. 31, 2085–2096 (2013). ADSCrossRefGoogle Scholar
  5. Araujo-Pradere, E.A., Redmon, R., Fedrizzi, M., Viereck, R., Fuller-Rowell, T.J.: Some characteristics of the ionospheric behavior during the Solar Cycle 23–24 minimum. Sol. Phys. 274, 439–456 (2011). ADSCrossRefGoogle Scholar
  6. Atıcı, R.: Comparison of GPS-TEC with modelled values from IRI-2016 and IRI-PLAS over Istanbul, Turkey. Astrophys. Space Sci. 363, 231 (2018). ADSCrossRefGoogle Scholar
  7. Bailey, G.J., Su, Y.Z., Oyama, K.-I.: Yearly variations in the low-latitude topside ionosphere. Ann. Geophys. 18, 789–798 (2000). ADSCrossRefGoogle Scholar
  8. Balan, N., Otsuka, Y., Bailey, G., Fukao, S.: Equinoctial asymmetries in the ionosphere and thermosphere observed by the MU radar. J. Geophys. Res. 103, 9481–9495 (1998). ADSCrossRefGoogle Scholar
  9. Balan, N., Otsuka, Y., Fukao, S., Abdu, M.A., Bailey, G.J.: Annual variations of the ionosphere: a review based on MU radar observations. Adv. Space Res. 25(1), 153–162 (2000). ADSCrossRefGoogle Scholar
  10. Bilitza, D., Altadill, D., Truhlik, V., Shubin, V., Galkin, I., Reinisch, B., Huang, X.: International reference ionosphere 2016: from ionospheric climate to real-time weather predictions. Space Weather 15(2), 418–429 (2017). ADSCrossRefGoogle Scholar
  11. Bohlin, J.D.: Extreme-ultraviolet observations of coronal holes. Sol. Phys. 51, 377–398 (1977) ADSCrossRefGoogle Scholar
  12. Burns, A.G., Solomon, S.C., Wang, W., Qian, L., Zhang, Y., Paxton, L.J., Yue, X., Thayer, J.P., Liu, H.L.: Explaining solar cycle effects on composition as it relates to the winter anomaly. J. Geophys. Res. Space Phys. 120, 5890–5898 (2015). ADSCrossRefGoogle Scholar
  13. Chaitanya, P.P., Patra, A.K., Balan, N., Rao, S.V.: Ionospheric variations over Indian low latitudes close to the equator and comparison with IRI-2012. Ann. Geophys. 33, 997–1006 (2015). ADSCrossRefGoogle Scholar
  14. Chakraborty, M., Kumar, S., Kumar, B.D., Guha, A.: Latitudinal characteristics of GPS derived ionospheric TEC: a comparative study with IRI 2012 model. Ann. Geophys. 57(5), A0539 (2014). CrossRefGoogle Scholar
  15. Chapman, S.: The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating earth. Proc. Phys. Soc. Lond. 43(1), 26–45 (1931). ADSCrossRefzbMATHGoogle Scholar
  16. Chen, Y., Liu, L., Wan, W., Yue, X., Su, S.-Y.: Solar activity dependence of the topside ionosphere at low latitudes. J. Geophys. Res. 114, A08306 (2009). ADSCrossRefGoogle Scholar
  17. Chen, Y., Liu, L., Wan, W.: Does the F10.7 index correctly describe solar EUV flux during the deep solar minimum of 2007–2009? J. Geophys. Res. 116, A04304 (2011). ADSCrossRefGoogle Scholar
  18. Chen, Y., Liu, L., Wan, W., Ren, Z.: Equinoctial asymmetry in solar activity variations of \(N_{m}\)F2 and TEC. Ann. Geophys. 30, 613–622 (2012). ADSCrossRefGoogle Scholar
  19. Cherniak, I., Zakharenkova, I.: Evaluation of the IRI-2016 and NeQuick electron content specification by COSMIC GPS radio occultation, ground-based GPS and Jason-2 joint altimeter/GPS observations. Adv. Space Res. 63(6), 1845–1859 (2019). ADSCrossRefGoogle Scholar
  20. Coisson, P., Radicella, S.M., Ciralo, L., Leitinger, R.L., Nava, B.: Global validation of IRI TEC for high and medium solar activity conditions. Adv. Space Res. 42, 770–775 (2008). ADSCrossRefGoogle Scholar
  21. Dashora, N., Suresh, S.: Characterisation of low-latitude TEC during Solar Cycle 23 and 24 using global ionospheric maps (GIMs) over Indian sector. J. Geophys. Res. Space Phys. 120, 5176–5193 (2015). ADSCrossRefGoogle Scholar
  22. D’ujanga, F.M., Opio, P., Twinomugisha, F.: Variation of the total electron content with solar activity during the ascending phase of Solar Cycle-24 observed at Makerere University, Kampala. In: Fuller-Rowell, T., Yizengaw, E., Doherty, P.H., Basu, S. (eds.) Ionospheric Space Weather: Longitude and Hemispheric Dependences and Lower Atmosphere Forcing. John Wiley & Sons, Inc., Hoboken (2016). CrossRefGoogle Scholar
  23. Duncan, R.A.: The equatorial F-region of the ionosphere. J. Atmos. Terr. Phys. 18, 89–100 (1959). ADSCrossRefGoogle Scholar
  24. Elizabeth, P., Manuel, P., Spalla, P., Philip, M., Matt, K.: A review of higher order ionospheric refraction effects on dual frequency GPS. Surv. Geophys. 32, 197–253 (2011). CrossRefGoogle Scholar
  25. Emery, B.A., Coumans, V., Evans, D.S., Germany, G.A., Greer, M.S., Holeman, E., Xu, W.: Seasonal, Kp, solar wind, and solar flux variations in long-term single-pass satellite estimates of electron and ion auroral hemispheric power. J. Geophys. Res. 113, A06311 (2008). ADSCrossRefGoogle Scholar
  26. Forbes, J.M., Palo, S., Zhang, X.: Variability of the ionosphere. J. Atmos. Sol.-Terr. Phys. 62, 685–693 (2000) ADSCrossRefGoogle Scholar
  27. Galav, P., Dashora, N., Sharma, S., Pandey, R.: Characterization of low latitude GPS-TEC during very low solar activity phase. J. Atmos. Terr. Phys. 72, 1309–1317 (2010). ADSCrossRefGoogle Scholar
  28. Garner, T.W., Gaussiran, T.L. II, Brian, T., Robert, H., Calfas, R.S., Gallagher, H.: Total electron content measurements in ionospheric physics. Adv. Space Res. 42, 720–726 (2008). ADSCrossRefGoogle Scholar
  29. Gonzalez, A.L.C., Gonzalez, W.D., Dutra, S.L.G.: Periodic variation in the geomagnetic activity: a study based on the Ap index. J. Geophys. Res. 98, 9215–9231 (1993). ADSCrossRefGoogle Scholar
  30. Gopalswamy, N., Sachiko, A., Seiji, Y., Xie, H., Pertti, M., Grzegorz, M.: The Mild Space Weather in Solar Cycle-24 (2015). Google Scholar
  31. Gowtam, V.S., Ram, S.T.: Ionospheric winter anomaly and annual anomaly observed from Formosat-3/COSMIC Radio Occultation observations during the ascending phase of Solar Cycle 24. Adv. Space Res. 60(8), 1585–1593 (2017). ADSCrossRefGoogle Scholar
  32. Hao, Y.Q., Shi, H., Xiao, Z., Zhang, D.H.: Weak ionization of the global ionosphere in Solar Cycle-24. Ann. Geophys. 32, 809–816 (2014). ADSCrossRefGoogle Scholar
  33. Horne, J.H., Baliunas, S.L.: A prescription for period analysis of unevenly sampled time series. Astrophys. J. 302, 757–763 (1986). ADSCrossRefGoogle Scholar
  34. Huang, Y.-N., Cheng, K.: Solar cycle variations of the equatorial ionospheric anomaly in total electron content in the Asian region. J. Geophys. Res. 101(A11), 24513–24520 (1996). ADSCrossRefGoogle Scholar
  35. Huttunen, K.E.J., Schwenn, R., Bothmer, V., Koskinen, H.E.J.: Properties and geoeffectiveness of magnetic clouds in the rising, maximum and early declining phases of Solar Cycle 23. Ann. Geophys. 23, 625–641 (2005). ADSCrossRefGoogle Scholar
  36. Jee, G., Lee, H.B., Soloman, S.C.: Global ionospheric total electron contents (TECs) during the last two solar minimum periods. J. Geophys. Res. Space Phys. 119(3), 2090–2100 (2014). ADSCrossRefGoogle Scholar
  37. Kane, R.: Are the double-peaks in solar indices during solar maxima of cycle 23 reflected in ionospheric foF2? J. Atmos. Terr. Phys. 68, 877–880 (2006). ADSCrossRefGoogle Scholar
  38. Kumar, S.: Performance of IRI-2012 model during a deep solar minimum and a maximum year over global equatorial regions. J. Geophys. Res. Space Phys. 121, 5664–5674 (2016). ADSCrossRefGoogle Scholar
  39. Langley, R., Mariangel, F., de Eurico, P., Marcelo, S.: Mapping the low latitude ionosphere with GPS. GPS World 13, 41–46 (2002) Google Scholar
  40. Laštovička, J., Mikhailov, A.V., Ulich, T., Bremer, J., Elias, A.G., Ortiz de Adler, N., Jara, V., Abarca del Rio, R., Foppian, A.J., Ovalle, E., Danilov, A.D.: Long-term trends in foF2: a comparison of various methods. J. Atmos. Terr. Phys. 68(17), 1854–1870 (2006). ADSCrossRefGoogle Scholar
  41. Lean, J.L., Meier, R.R., Picone, J.M., Emmert, J.T.: Ionospheric total electron content: global and hemispheric climatology. J. Geophys. Res. 116, A10318 (2011). ADSCrossRefGoogle Scholar
  42. Lee, W.K., Kil, H., Kwak, Y.S., Wu, Q., Cho, S., Park, J.U.: The winter anomaly in the middle-latitude F region during the solar minimum period observed by the Constellation Observing System for Meteorology, Ionosphere, and Climate. J. Geophys. Res. 116(A2), A02302 (2011). ADSCrossRefGoogle Scholar
  43. Liu, L., He, M., Yue, X., Ning, B., Wan, W.: Ionosphere around equinoxes during low solar activity. J. Geophys. Res. 115, A09307 (2010). ADSCrossRefGoogle Scholar
  44. Liu, L., Chen, Y., Le, H., Kurkin, V.I., Polekh, N.M., Lee, C.-C.: The ionosphere under extremely prolonged low solar activity. J. Geophys. Res. 116, A04320 (2011). ADSCrossRefGoogle Scholar
  45. Liu, L., Yang, J., Le, H., Chen, Y., Wan, W., Lee, C.-C.: Comparative study of the equatorial ionosphere over Jicamarca during recent two solar minima. J. Geophys. Res. 117, A01315 (2012). ADSCrossRefGoogle Scholar
  46. Mannucci, A.J., Wilson, B.D., Edwards, C.D.: A new method for monitoring the Earth’s ionospheric total electron content using the GPS global network, paper presented at ION GPS-93. Inst. of Navigation, 1323–1332 (1993).
  47. Mayr, H.G., Mahajan, K.K.: Seasonal variation in the F2 region. J. Geophys. Res. 76(4), 1017–1027 (1971). ADSCrossRefGoogle Scholar
  48. Mazzella, A.J. Jr., Habarulema, J.B., Yizengaw, E.: Determinations of ionosphere and plasmasphere electron content for an African chain of GPS stations. Ann. Geophys. 35(3), 599–612 (2017). ADSCrossRefGoogle Scholar
  49. McIntosh, D.H.: On the annual variation of magnetic disturbance. Philos. Trans. R. Soc. Lond. Ser. A 251, 525–552 (1959) ADSCrossRefGoogle Scholar
  50. Mengistu, E., Damtie, B., Moldwin, M.B., Nigussie, M.: Comparison of GPS-TEC measurements with NeQuick2 and IRI model predictions in the low latitude East African region during varying solar activity period (1998 and 2008–2015). Adv. Space Res. 61(6), 1456–1475 (2018). ADSCrossRefGoogle Scholar
  51. Mikhailov, A.V., Perrone, L.: Comment on “The winter anomaly in the middle-latitude F region during the solar minimum period observed by the Constellation Observing System for Meteorology, Ionosphere, and Climate” by Lee, W.K., Kil, H., Kwak, Y.-S., Wu, Q., Cho, S., and Park, J.U. J. Geophys. Res. Space Phys. 119, 7972–7978 (2014). ADSCrossRefGoogle Scholar
  52. Millward, G.H., Rishbeth, H., Fuller-Rowell, T.J., Aylward, A.D., Quegan, S., Moffett, R.J.: Ionospheric F2 layer seasonal and semiannual variations. J. Geophys. Res. 101(A3), 5149–5156 (1996). ADSCrossRefGoogle Scholar
  53. Moffet, R.J., Hanson, W.B.: Effect of Ionization Transport on the Equatorial F-Region. Nature 206, 705–706 (1965). ADSCrossRefGoogle Scholar
  54. Mursula, K., Zieger, B.: The 13.5 day periodicity in the Sun, solar wind and geomagnetic activity. J. Geophys. Res. 101(A12), 27077–27090 (1996). ADSCrossRefGoogle Scholar
  55. Oluwadare, S.T., Thai, C.N., Akala, A.O., Heise, S., Alizadeh, M., Schuh, H.: Characterization of GPS-TEC over African equatorial ionization anomaly (EIA) region during 2009–2016. Adv. Space Res. 63(1), 282–301 (2019). ADSCrossRefGoogle Scholar
  56. Oryema, B., Jurua, E., D’ujanga, F.M., Ssebiyonga, N.: Investigation of TEC variations over the magnetic equatorial and equatorial anomaly regions of the African sector. Adv. Space Res. 56, 1939–1950 (2015). ADSCrossRefGoogle Scholar
  57. Panda, S.K., Gedam, S.S., Rajaram, G.: Study of ionospheric TEC from GPS observations and comparisons with IRI and SPIM model predictions in the low latitude anomaly Indian sub continental region. Adv. Space Res. 55, 1948–1964 (2014). ADSCrossRefGoogle Scholar
  58. Perlongo, N.J., Ridley, A.J., Cnossen, I., Wu, C.: A year-long comparison of GPS-TEC and global ionosphere-thermosphere models. J. Geophys. Res. Space Phys. 123, 1410–1428 (2018). ADSCrossRefGoogle Scholar
  59. Perna, L., Pezzopane, M.: foF2 vs solar indices for the Rome station: looking for the best general relation which is able to describe the anomalous minimum between cycles 23 and 24. J. Atmos. Sol.-Terr. Phys. 148, 13–21 (2016). ADSCrossRefGoogle Scholar
  60. Rama Rao, P.V.S., Gopi Krishna, S., Niranjan, K., Prasad, D.S.V.V.D.: Temporal and spatial variations in TEC using simultaneous measurements from the Indian GPS network of receivers during the low solar activity period of 2004–2005. Ann. Geophys. 24, 3279–3292 (2006) ADSCrossRefGoogle Scholar
  61. Rao, S.S., Galav, P., Sharma, S., Pandey, R.: Low-latitude TEC variability studied from magnetically conjugate locations along \(73^{\circ}\) E longitude. J. Atmos. Sol. Terr. Phys. 104, 1–6 (2013). ADSCrossRefGoogle Scholar
  62. Rao, S.S., Chakraborty, M., Pandey, R.: Ionospheric variations over Chinese EIA region using foF2 and comparison with IRI-2016 model. Adv. Space Res. 62(1), 84–93 (2018). ADSCrossRefGoogle Scholar
  63. Rao, S.S., Sharma, S., Pandey, R.: Study of solar flux dependency of the winter anomaly in GPS-TEC. GPS Solut. 23, 4 (2019). CrossRefGoogle Scholar
  64. Richardson, I.G.: Geomagnetic activity during the rising phase of Solar Cycle 24. J. Space Weather Space Clim. 3, A08 (2013). CrossRefGoogle Scholar
  65. Rishbeth, H.: Questions of the equatorial F2 layer and thermosphere. J. Atmos. Terr. Phys. 66(17), 1669–1674 (2004). ADSCrossRefGoogle Scholar
  66. Rishbeth, H., Mendillo, M.: Patterns of F2-layer variability. J. Atmos. Terr. Phys. 63, 1661–1680 (2001). ADSCrossRefGoogle Scholar
  67. Roble, R.G., Dickinson, R.E., Ridley, E.C.: Seasonal and solar-cycle variations of zonal mean circulation in the thermosphere. J. Geophys. Res. 82, 5493–5504 (1977). ADSCrossRefGoogle Scholar
  68. Russell, C.T., McPherron, R.L.: Semiannual variation of geomagnetic activity. J. Geophys. Res. 92, 108 (1973). CrossRefGoogle Scholar
  69. Scargel, J.D.: Studies in astronomical time series analysis. II—Statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J. 263, 835–853 (1982). ADSCrossRefGoogle Scholar
  70. Scharroo, R., Smith, W.H.F.: A global positioning system based climatology for the total electron content in the ionosphere. J. Geophys. Res. 115, A10318 (2010). ADSCrossRefGoogle Scholar
  71. Schunk, R.W., Nagy, A.F.: Ionospheres: Physics, Plasma Physics, and Chemistry. Cambridge University Press, Cambridge (2004). Google Scholar
  72. Selvakumaran, R., Veenadhari, B., Akiyama, S., Pandya, M., Gopalswamy, N., Yashiro, S., Kumar, S., Mäkelä, P., Xie, H.: On the reduced geo-effectiveness of Solar Cycle 24: a moderate storm perspective. J. Geophys. Res. Space Phys. 121, 8188–8202 (2016). ADSCrossRefGoogle Scholar
  73. Shi, C., Zhang, T., Wang, C., Wang, Z., Fan, L.: Comparison of IRI-2016 model with IGS VTEC maps during low and high solar activity period. Results Phys. 12, 555–561 (2019). ADSCrossRefGoogle Scholar
  74. Shim, S.J., Geonhwa, J., Ludger, S.: Climatology of plasmaspheric total electron content obtained from Jason 1 satellite: climatology of plasmaspheric TEC. J. Geophys. Res. Space Phys. 122(4), 1611 (2017). ADSCrossRefGoogle Scholar
  75. Shreedevi, P.R., Choudhary, R.K., Yadav, S., Thampi, S.V., Ajesh, A.: Variation of the TEC at a dip equatorial station, Trivandrum and a mid-latitude station, Hanle during the descending phase of the Solar Cycle 24 (2014–2016). J. Atmos. Terr. Phys. 179, 425–434 (2018). ADSCrossRefGoogle Scholar
  76. Solomon, S.C., Qian, L., Burns, A.G.: The anomalous ionosphere between Solar Cycle 23 and 24. J. Geophys. Res. Space Phys. 118, 6524–6535 (2013). ADSCrossRefGoogle Scholar
  77. Solomon, S., Burns, A., Emery, B., Foster, B., Liu, H., Lu, G., Maute, A., McInerney, J., Pedatella, N., Qian, L., Richmond, A., Roble, R., Wang, W., Wu, Q.: Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM). In: CEDAR Summer Workshop, Santa Fe, New Mexico (2016). Google Scholar
  78. Solomon, S., Liying, Q., Anthony, J.M.: Ionospheric Electron Content during Solar Cycle 23. J. Geophys. Res. Space Phys. 123, 5223 (2018). ADSCrossRefGoogle Scholar
  79. Tariku, Y.A.: Patterns of GPS-TEC variation over low-latitude regions (African sector) during the deep solar minimum (2008 to 2009) and solar maximum (2012 to 2013) phases. Earth Planets Space 67, 35 (2015). ADSCrossRefGoogle Scholar
  80. Venkatesh, K., Rama Rao, P.V.S., Saranya, P.L., Prasad, D.S.V.V.D., Niranjan, K.: Vertical electron density and topside effective scale height (HT) variations over the Indian equatorial and low latitude stations. Ann. Geophys. 29, 1861–1872 (2011). ADSCrossRefGoogle Scholar
  81. Verma, V., Joshi, C.G.: On the occurrence rate of high-speed solar wind events. Sol. Phys. 155, 401–404 (1994). ADSCrossRefGoogle Scholar
  82. Watari, S.: Geomagnetic storms of cycle 24 and their solar sources. Earth Planets Space 69, 70 (2017). ADSCrossRefGoogle Scholar
  83. Yasyukevich, Y.V., Yasyukevich, A.S., Ratovsky, K.G., Klimenko, M.V., Klimenko, V.V., Chirik, N.V.: Winter anomaly in \(N_{m}\)F2 and TEC: when and where it can occur. J. Space Weather Space Clim. 8, A45 (2018). ADSCrossRefGoogle Scholar
  84. Yizengaw, E., Moldwin, M.B., Galvan, D., Iijima, B.A., Komjathy, A., Mannucci, A.J.: Global plasmaspheric TEC and its relative contribution to GPS-TEC. J. Atmos. Sol.-Terr. Phys. 70(11–12), 1541–1548 (2008). ADSCrossRefGoogle Scholar
  85. Zhao, B., Wan, W., Liu, L., Mao, T., Ren, Z., Wang, M., Christensen, A.B.: Features of annual and semi-annual variations derived from the global ionospheric maps of the total electron content. Ann. Geophys. 25, 2513–2527 (2007). ADSCrossRefGoogle Scholar
  86. Zou, L., Rishbeth, H., Müller-Wodarg, I.C.F., Aylward, A.D., Millward, G.H., Fuller-Rowell, T.J., Idenden, D.W., Moffett, R.J.: Annual and semiannual variations in the ionospheric F2-layer: I. Modelling. Ann. Geophys. 18, 927–944 (2000). ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • S. S. Rao
    • 1
  • Monti Chakraborty
    • 2
  • Sanjay Kumar
    • 1
  • A. K. Singh
    • 1
    Email author
  1. 1.Department of Physics, Institute of ScienceBanaras Hindu UniversityVaranasiIndia
  2. 2.Department of Electronics and Communication EngineeringTripura UniversityAgartalaIndia

Personalised recommendations