Astrophysics and Space Science

, 364:210 | Cite as

High-latitude mesospheric intense turbulence associated with high-speed solar wind streams

  • Young-Sook LeeEmail author
  • Kyung-Chan Kim
  • Young-Sil Kwak
  • Yongha Kim
Original Article


Intense turbulence is frequently observed in the polar mesosphere summer echoes (PMSE) from the data of very high frequency radar operating at Esrange, Sweden. The turbulence can be estimated from the turbulent energy dissipation rate (\(\epsilon \)) by considering aspect sensitivity. We find that variation in turbulence at altitude 82–86 km is in a good correlation with enhanced geomagnetic disturbances and precipitating energetic electrons into the mesosphere induced by high-speed solar wind streams. In addition, intense turbulence (a few tens of mW/kg) frequently occurs in the common volume with large plasma/neutral horizontal speeds (\(\geq 150~\text{m}\,\text{s}^{-1}\)) at 82–90 km altitudes. The large velocities are ready to form wind shear/shift. Therefore, we suggest that the summer mesospheric turbulence is to a significant extent accompanied by large plasma/neutral velocities and wind shear in the mesosphere, in turn linked to solar wind energy input during geomagnetic disturbances.


Turbulence Polar summer mesosphere Energetic electron precipitation PMSE Wind shear Geomagnetic disturbances 



This research was supported by National R&D Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science & ICT (2018M1A3A3A02066015). ESRAD is a joint venture between the Swedish Institute of Space Physics and the Swedish Space Corporation (Esrange, Sweden). We thank Professor Sheila Kirkwood for providing invaluable comments and discussions in retrieving fruitful results from the ESRAD data. We thank GSFC/SPDF OMNIWeb for the provision of the solar wind parameters and geomagnetic activity indices used in this study. The authors also would like to express their appreciation of the National Centre for Environmental Information of the National Oceanic and Atmospheric Administration (NOAA) for granting permission to use the MEPED data on the POES, which was downloaded from


  1. Berger, U., von Zahn, U.: The two-level structure of the mesopause: a model study. J. Geophys. Res. 104, 22083–22093 (1999). ADSCrossRefGoogle Scholar
  2. Bluestein, H.B.: Observations and Theory of Weather Systems. Vol. 2, Synoptic–Dynamic Meteorology in Midlatitudes p. 246. Oxford University Press, London (1993) Google Scholar
  3. Briggs, B.H.: The analysis of spaced sensor records by correlation techniques. In: Handbook for MAP. SCOSTEP Secr., vol. 13, pp. 166–186. University of Illinois, Urbana (1984) Google Scholar
  4. Briggs, B.H., Phillips, G.J., Shinn, D.H.: The analysis of observations on spaced receivers of the fading of radio signals. Proc. Phys. Soc. 63B, 106–121 (1950) ADSCrossRefGoogle Scholar
  5. Cerisier, J.-C., Marchaudon, A., Bosqued, J.-M., McWilliams, K., Frey, H.U., Bouhram, M., Laakso, H., Dunlop, M., Fo¨ rster, M., Fazakerley, A.: Ionospheric signatures of plasma injections in the cusp triggered by solar wind pressure pulses. J. Geophys. Res. 110, A08204 (2005). ADSCrossRefGoogle Scholar
  6. Cho, J.Y.N., Röttger, J.: An updated review of polar mesosphere summer echoes: observation, theory, and their relationship to noctilucent clouds and subvisible aerosols. J. Geophys. Res. 102, 2001–2020 (1997) ADSCrossRefGoogle Scholar
  7. Clark, T.L., Hall William, D., Kerr, R.M., Middleton, D., Radke, L., et al.: Origins of aircraft-damaging clear-air turbulence during the 9 December 1992 Colorado downslope windstorm: numerical simulations and comparison with observations. J. Atmos. Sci. 57, 1105–1131 (2000) ADSCrossRefGoogle Scholar
  8. Craven, J.D., Frank, L.A., Russell, C.T., Smith, E.J., Lepping, R.P.: Global auroral responses to magnetospheric compressions by shocks in the solar wind: two case studies. In: Kamide, Y., Slavin, J.A. (eds.) Solar Wind-Magnetosphere Coupling, pp. 367–380. Terra Scientific Publishing Co., Tokyo (1986) CrossRefGoogle Scholar
  9. Engler, N., Latteck, R., Strelnikov, B., Singer, B., Rapp, M.: Turbulent energy dissipation rates observed by Doppler MST radar and by rocket-borne instruments during the MIDAS/MacWAVE campaign 2002. Ann. Geophys. 23, 1147–1156 (2005) ADSCrossRefGoogle Scholar
  10. Fritts, D.C., Smith, S.A., Ben Balsley, B., Philbrick, C.R.: Evidence of gravity wave saturation and local turbulence production in the summer mesosphere and lower thermosphere during the STATE experiment. J. Geophys. Res. 93, 7015–7025 (1988) ADSCrossRefGoogle Scholar
  11. Fritts, D.C., Wang, L., Geller, M.A., Lawrence, D.A., Werne, J., Balsley, B.B.: Numerical modeling of multiscale dynamics at a high Reynolds number: instabilities, turbulence, and an assessment of Ozmidov and Thorpe Scales. J. Atmos. Sci. 73, 555–578 (2016) ADSCrossRefGoogle Scholar
  12. Garcia, R.R.: Dynamics, radiation, and photochemistry in the mesosphere: implications for the formation of noctilucent clouds. J. Geophys. Res. 94, 14,605–14,615 (1989) ADSCrossRefGoogle Scholar
  13. Gonzalez, W.D., Guarnieri, F.L., Clua-Gonzalez, A.L., Echer, E., Alves, M.V., Ogino, T., Tsurutani, B.T.: Magnetospheric energetics during HILDCAAs. In: Recurrent Magnetic Storms: Corotating Solar Wind Streams. Geophys. Monogr. Ser., vol. 167, p. 175. Am. Geophys. Union, Washington (2006) CrossRefGoogle Scholar
  14. Gorin, J.D., Koustov, A.V., Makarevich, R.A., St.-Maurice, J.-P., Nozawa, S.: Velocity of E-region HF echoes under strongly-driven electrojet conditions. Ann. Geophys. 30, 235–250 (2012) ADSCrossRefGoogle Scholar
  15. Hall, C.M., Aso, T.: Identification of possible ion-drag induced neutral instability in the lower thermosphere over Svalbard. Earth Planets Space 52, 639–643 (2000) ADSCrossRefGoogle Scholar
  16. Hall, C.M., Hoppe, U.-P., Blix, T.A., Thrane, E.V., Manson, A.H., Meek, C.E.: Seasonal variation of turbulent energy dissipation rates in the polar mesosphere: a comparison of methods. Earth Planets Space 51, 515–524 (1999) ADSCrossRefGoogle Scholar
  17. Hall, C.M., Aso, T., Tsutsumi, M.: Atmospheric stability at 90 km, 78 °N, 16 °E. Earth Planets Space 59, 157–164 (2007) ADSCrossRefGoogle Scholar
  18. Heelis, R.: Electrodynamics in the low and middle latitude ionosphere: a tutorial. J. Atmos. Sol.-Terr. Phys. 66, 825–838 (2004) ADSCrossRefGoogle Scholar
  19. Hocking, W.K.: On the extraction of atmospheric turbulence parameters from radar backscatter Doppler spectra—I. Theory. J. Atmos. Terr. Phys. 45(2/3), 89–102 (1983) ADSCrossRefGoogle Scholar
  20. Hocking, W.K., Ruster, R., Czechowsky, P.: Absolute reflectivities and aspect sensitivities of VHF radio wave scatterers measured with the SOUSY radar. J. Atmos. Terr. Phys. 48, 131–144 (1986) ADSCrossRefGoogle Scholar
  21. Holdsworth, D.A., Vincent, R.A., Reid, I.M.: Mesospheric turbulent velocity estimation using the Buckland Park MF radar. Ann. Geophys. 19, 1007–1017 (2001) ADSCrossRefGoogle Scholar
  22. Kirkwood, S., Wolf, I., Nilsson, H., Dalin, P., Mikhaylova, D., Belova, E.: Polar mesosphere summer echoes at Wasa, Antarctica (73 °S): First observations and comparison with 68 °N. Geophys. Res. Lett. 34, L15803 (2007). ADSCrossRefGoogle Scholar
  23. Latteck, R., Singer, W., Hocking, W.H.: Measurement of turbulent kinetic energy dissipation rates in the mesosphere by a 3 MHz Doppler radar. Adv. Space Res. 35, 1905–1910 (2005) ADSCrossRefGoogle Scholar
  24. Lee, Y.-S., Shepherd, G.G.: Summer high-latitude mesospheric observations of supersonic bursts and O(1S) emission rate with the UARS WINDII instrument and the association with sprites, meteors, and lightning. J. Geophys. Res. 115, A00E26 (2010). CrossRefGoogle Scholar
  25. Lee, Y.-S., Kirkwood, S., Shepherd, G.G., Kwak, Y.-S., Kim, K.-C.: Long-periodic strong radar echoes in the summer polar D region correlated with oscillations of high-speed solar wind streams. Geophys. Res. Lett. 40, 4160–4164 (2013). ADSCrossRefGoogle Scholar
  26. Lee, Y.-S., Kirkwood, S., Kwak, Y.-S., Kim, K.-C., Shepherd, G.G.: Polar summer mesospheric extreme horizontal drift speeds during interplanetary corotating interaction regions (CIRs) and high-speed solar wind streams: coupling between the solar wind and the mesosphere. J. Geophys. Res. Space Phys. 119, 3883–3894 (2014). ADSCrossRefGoogle Scholar
  27. Lee, Y.-S., Kwak, Y.-S., Kim, K.-C., Solheim, B., Lee, R., Lee, J.: Observation of atomic oxygen O(1S) green-line speed solar wind streams. J. Geophys. Res. Space Phys. 121, 1042–1054 (2016). CrossRefGoogle Scholar
  28. Lee, Y.-S., Kim, Y.H., Kim, K.-C., Kwak, Y.-S., Sergienko, T., Kirkwood, S., Johnsen, M.G.: EISCAT observation of wave-like fluctuations in vertical velocity of polar mesospheric summer echoes associated with a geomagnetic disturbance. J. Geophys. Res. Space Phys. 123, 5182–5194 (2018). ADSCrossRefGoogle Scholar
  29. Lei, J., Thayer, J.P., Forbes, J.M., Sutton, E.K., Nerem, R.S., et al.: Global thermospheric density variations caused by high-speed solar wind streams during the declining phase of solar cycle 23. J. Geophys. Res. 113, A11303 (2008). ADSCrossRefGoogle Scholar
  30. Liu, A., Hocking, W., Franke, S., Thayaparan, T.: Comparison of Na lidar and meteor radar wind measurements at Starfire Opical Range, NM, USA. J. Atmos. Sol.-Terr. Phys. 64, 31–40 (2002) ADSCrossRefGoogle Scholar
  31. Lubken, F.-J.: Seasonal variation of turbulent energy dissipation rates at high latitudes as determined by in situ measurements of neutral density fluctuations. J. Geophys. Res. 102(D12), 13441–13456 (1997) ADSCrossRefGoogle Scholar
  32. Mann, I., Häggström, I., Tjulin, A., Rostami, S., Anyairo, C.C., Dalin, P.: First wind shear observation in PMSE with the tristatic EISCAT VHF radar. J. Geophys. Res. Space Phys. 121, 11,271–11,281 (2016). CrossRefGoogle Scholar
  33. Rapp, M., Lübken, F.-J.: On the nature of PMSE: electron diffusion in the vicinity of charged particles revisited. J. Geophys. Res. 108(D8), 8437 (2003). CrossRefGoogle Scholar
  34. Rapp, M., Lübken, F.-J.: Polar mesosphere summer echoes (PMSE): review of observations and current understanding. Atmos. Chem. Phys. 4, 2601–2633 (2004) ADSCrossRefGoogle Scholar
  35. Rapp, M., Strelnikov, B., Müllemann, A., Lübken, F.-J., Fritts, D.C.: Turbulence measurements and implications for gravity wave dissipation during the MaCWAVE/MIDAS rocket program. Geophys. Res. Lett. 31, L24S07 (2004). CrossRefGoogle Scholar
  36. Sinnhuber, M., Nieder, H., Wieters, N.: Energetic particle precipitation and the chemistry of the mesosphere/lower thermosphere. Surv. Geophys. 33, 1281–1334 (2012) ADSCrossRefGoogle Scholar
  37. Smirnova, M., Belova, E., Kirkwood, S.: Aspect sensitivity of polar mesosphere summer echoes based on ESRAD MST radar measurements in Kiruna, Sweden in 1997–2010. Ann. Geophys. 30, 457–465 (2012) ADSCrossRefGoogle Scholar
  38. Smith, E.J., Wolfe, J.H.: Observations of interaction regions and corotating shocks between one and five AU: Pioneers 10 and 11. Geophys. Res. Lett. 3, 137–140 (1976). ADSCrossRefGoogle Scholar
  39. Smith, S.A., Fritts, D.C., VanZandt, T.E.: Evidence for a saturated spectrum of atmospheric gravity waves. J. Atmos. Sci. 44, 1404–1410 (1987) ADSCrossRefGoogle Scholar
  40. Sommer, S., Chau, J.L., Schult, C.: On high time-range resolution observations of PMSE: statistical characteristics. J. Geophys. Res., Atmos. 121, 6713–6722 (2016) ADSCrossRefGoogle Scholar
  41. Spanswick, E., Donovan, E., Baker, G.: Pc5 modulation of high energy electron precipitation: particle interaction regions and scattering efficiency. Ann. Geophys. 23, 1533–1542 (2005) ADSCrossRefGoogle Scholar
  42. Takahashi, K., Ukhorskiy, A.Y.: Solar wind control of Pc5 pulsation power at geosynchronous orbit. J. Geophys. Res. 112, A11205 (2007). ADSCrossRefGoogle Scholar
  43. Tsurutani, B.T., Gonzalez, W.D., Gonzalez, A.L.C., Tang, F., Arballo, J.K., Okada, M.: Interplanetary origin of geomagnetic activity in the declining phase of the solar cycle. J. Geophys. Res. 100(A11), 21717–21733 (1995). ADSCrossRefGoogle Scholar
  44. Tsurutani, B.T., Gonzalez, W.D., Gonzalez, A.L.C., Guarnieri, F.L., Gopalswamy, N., et al.: Corotating solar wind streams and recurrent geomagnetic activity: a review. J. Geophys. Res. 111, A07S01 (2006). CrossRefGoogle Scholar
  45. Tsurutani, B.T., Hajra, R., Tanimori, T., Takada, A., Bhanu, R., Mannucci, A.J., Lakhina, G.S., et al.: Heliospheric plasma sheet (HPS) impingement onto the magnetosphere as a cause of relativistic electron dropouts (REDs) via coherent EMIC wave scattering with possible consequences for climate change mechanisms. J. Geophys. Res. Space Phys. 121, 10,130–10,156 (2016). CrossRefGoogle Scholar
  46. Wüst, S., Bittner, M., Yee, J.-H., Mlynczak, M.G., Russell, J.M. III: Variability of the Brunt–Väisälä frequency at the OH* layer height. Atmos. Meas. Tech. 10, 4895–4903 (2017) CrossRefGoogle Scholar
  47. Yi, W., Reid, I.M., Xue, X., Younger, J.P., Murphy, D.J., et al.: Response of neutral mesospheric density to geomagnetic forcing. Geophys. Res. Lett. 44, 8647–8655 (2017a). ADSCrossRefGoogle Scholar
  48. Yi, W., Reid, I.M., Xue, X., Younger, J.P., Spargo, A.J., et al.: First observation of mesosphere response to the solar wind high-speed streams. J. Geophys. Res. Space Phys. 122, 9080–9088 (2017b). ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Astronomy and Space ScienceChungnam National UniversityDaejeonRepublic of Korea
  2. 2.Division of Science Education, College of EducationDaegu UniversityGyeongsanRepublic of Korea
  3. 3.Korea Astronomy and Space Science InstituteDaejeonRepublic of Korea
  4. 4.Department of Astronomy and Space ScienceUniversity of Science and TechnologyDaejeonRepublic of Korea

Personalised recommendations