Advertisement

Astrophysics and Space Science

, 364:203 | Cite as

Latitudinal difference in meteor trail ionization heights and identification of meteor showers

  • K. Chenna Reddy
  • B. Premkumar
  • G. Yellaiah
Original Article
  • 38 Downloads

Abstract

The ionization heights of meteor trails are strongly dependent on local atmospheric conditions in the mesosphere and lower thermosphere (MLT)-region. We present here latitudinal difference in ionization heights of meteor trails at two distinct latitudes, Thumba (8.5N, 77E), India and Eureka (80N, 85.8W), Canada. There is a large seasonal variation in meteor count at high latitude as compared to low latitude. Similarly, there is a large variation in meteor trail ionization heights at high latitudes, but not at low latitudes. However, it noticed that the trail ionisation heights at low latitude are found to be about 2 km higher. The latitudinal differences are probably related to changes in electron line densities at local MLT-regions. The identification of meteoroid streams in the sporadic background is still a noteworthy problem to pursue. By considering ionisation heights of meteor trails as a simple but robust metric, we identified shower meteors from the background sporadic activity, as the ionization heights of shower meteors are different from the sporadic meteors. We apply this shower detection technique on long-term data set at two different latitudes and compared with existing shower calendars. By using the median height of meteor trails and their corresponding upper and lower quartiles (Uq and Lq) as a metric, we unambiguously identified all northern hemisphere showers with a zenithal hourly rate larger than 20, which are in good agreement with the known showers.

Keywords

Meteor trail ionization heights Meteor showers Meteoroid properties 

Notes

Acknowledgements

The authors thankful to Dr. Geetha Ramkumar, SPL, VSSC, India and CANDAC team, Canada for data support. The Eureka meteor radar is part of the Canadian Network of the Detection of Atmospheric Change (CANDAC) project.

References

  1. Bronshten, V.A.: Physics of Meteor Flight in the Atmosphere. Reidel, Dordrecht (1983) Google Scholar
  2. Brown, P., Weryk, R., Wong, D., Jones, J.: A meteoroid stream survey using the Canadian Meteor Orbit Radar: I. Methodology and radiant catalogue. Icarus 195(1), 317–339 (2008) ADSCrossRefGoogle Scholar
  3. Ceplecha, Z., Borovicka, J., Elford, W.G., Revelle, D.O., Hawkes, R.L., Porubcan, V., Simek, M.: Meteor phenomena and bodies. Space Sci. Rev. 84, 327–471 (1998) ADSCrossRefGoogle Scholar
  4. Cziczo, D.J., Thomson, D.S., Murphy, D.M.: Ablation, flux, and atmospheric implications of meteors inferred from stratospheric aerosol. Science 291, 1772–1775 (2001) ADSCrossRefGoogle Scholar
  5. Dyrud, D., Oppenheim, L.M., Vom Endt, A.: The anomalous diffusion of meteor trails. Geophys. Res. Lett. 28(14), 2775–2778 (2001) ADSCrossRefGoogle Scholar
  6. Hall, C.M., Dyrland, M.E., Tsutsumi, M., Mulligan, F.J.: Temperature trends at 90 km over Svalbard, Norway (78N l6E), seen in one decade of meteor radar observations. J. Geophys. Res. 117, D08104 (2012) ADSGoogle Scholar
  7. Herlofson, N.: The theory of meteor ionization. Rep. Prog. Phys. 11, 444–454 (1947) Google Scholar
  8. Hocking, W.K.: Radar meteor decay rate variability and atmospheric consequences. Ann. Geophys. 22, 3805–3814 (2004) ADSCrossRefGoogle Scholar
  9. Hocking, W.K., Fuller, B., Vandepeer, B.: Real-time determination of meteor-related parameters utilizing modern digital technology. J. Atmos. Sol.-Terr. Phys. 63, 155–169 (2001) ADSCrossRefGoogle Scholar
  10. Jacchia, L.G., Kopal, Z., Millman, P.M.: A photographic study of the Draconid meteor shower of 1946. Astron. Phys. J. 111, 104–133 (1950) ADSCrossRefGoogle Scholar
  11. Jenniskens, P.: Meteor Showers and Parent Comets. Cambridge University Press, Cambridge (2006) CrossRefGoogle Scholar
  12. Jenniskens, P.: Meteor showers in review. Planet. Space Sci. 143, 116–124 (2017) ADSCrossRefGoogle Scholar
  13. Jones, J., Webster, A.R., Hocking, W.K.: An improved interferometer design for use with meteor radars. Radio Sci. 33(1), 55–66 (1998) ADSCrossRefGoogle Scholar
  14. Jopek, T.J., Kanuchova, Z.: Current status of the IAU MDC Meteor Showers Database. In: Jopek, T.J., Rietmeijer, F.J.M., Watanabe, J., Williams, I.P. (eds.) Meteoroids 2013. Proceedings of the Astronomical Conference Held at A.M. University, Poznan, Poland, Aug. 26–30, 2013 pp. 353–364. A.M. University, Poznan (2014) Google Scholar
  15. Kelley, M.C.: The Earth’s Ionosphere: Plasma Physics and Electrodynamics. Elsevier, New York (2009) Google Scholar
  16. Kim, J.H., Kim, Y.H., Lee, C.S., Jee, G.: Seasonal variation of meteor decay times observed at King Sejong station (62.22S, 58.78W). Antarctica. J. Atmos. Sol.-Terr. Phys. 72, 883–889 (2010) ADSCrossRefGoogle Scholar
  17. Kim, J.H., Kim, Y.H., Jee, G., Lee, C.S.: Mesospheric temperature estimation from meteor decay times of weak and strong meteor trails. J. Atmos. Sol.-Terr. Phys. 89, 18–26 (2012) ADSCrossRefGoogle Scholar
  18. Koten, P., Spurn, P., Borovika, J., Stork, R.: Extreme beginning heights for non-Leonid meteors. In: Proceedings, Meteoroids 2001 Conference, pp. 119–122 (2001) Google Scholar
  19. Koten, P., Spurn, P., Borovicka, J., Evans, S., Elliott, A., Betlem, H., Stork, R., Jobse, K.: The beginning heights and light curves of high-altitude meteors. Meteorit. Planet. Sci. 41(9), 1305–1320 (2006) ADSCrossRefGoogle Scholar
  20. Kozlovsky, A., Lester, M.: On the VHF radar echoes in the region of midnight aurora: signs of ground echoes modulated by the ionosphere. J. Geophys. Res. Space Phys. 120, 2099–2109 (2015) ADSCrossRefGoogle Scholar
  21. Kumar, K.K., Ramkumar, G., Shelbi, S.T.: Initial results from SKiYMET meteor radar at Thumba (8.5N, 77E): 1. Comparison of wind measurements with MF spaced antenna radar system. Radio Sci. 42, RS6008 (2007) ADSGoogle Scholar
  22. Love, S.G., Brownlee, D.E.: Heating and thermal transformation of micromete- oroids entering the Earth’s atmosphere. Icarus 89, 26–43 (1991) ADSCrossRefGoogle Scholar
  23. Lovell, A.C.B.: Meteor Astronomy, pp. 21–30. University Press, Oxford (1954) Google Scholar
  24. Lukianova, R., Kozlovsky, A., Lester, M.: Recognition of meteor showers from the heights of ionization trails. J. Geophys. Res. Space Phys. 123, 7067–7076 (2018) ADSCrossRefGoogle Scholar
  25. Manning, L.A., Villard, O.G. Jr., Peterson, A.M.: The length of ionized meteor trails. Am. Geophys. Union 34(1), 16–21 (1953) CrossRefGoogle Scholar
  26. Murray, I.S., Hawkes, R.L., Jenniskens, P.: Airborne intensified charge-couple device observations of the 1998 Leonid shower. Meteorit. Planet. Sci. 34, 949–958 (1999) ADSCrossRefGoogle Scholar
  27. Oppenheim, M.M., Dimant, Y.S.: First 3-D simulations of meteor plasma dynamics and turbulence. Geophys. Res. Lett. 42, 681–687 (2015) ADSCrossRefGoogle Scholar
  28. Picone, J., Hedin, A., Drob, D., Aikin, A.: NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues. J. Geophys. Res. 107(A12), 1468 (2002) CrossRefGoogle Scholar
  29. Plane, J.M.: Atmospheric chemistry of meteoric metals. Chem. Rev. 103, 4963–4984 (2003) CrossRefGoogle Scholar
  30. Plane, J.M.: Cosmic dust in the Earth’s atmosphere. Chem. Soc. Rev. 41, 6507–6518 (2012) ADSCrossRefGoogle Scholar
  31. Plane, J.M., Feng, W., Dawkins, E.C.: The mesosphere and metals: chemistry and changes. Chem. Rev. 115, 4497–4541 (2015) CrossRefGoogle Scholar
  32. Premkumar, B., Chenna Reddy, K., Yellaiah, G., Kishore Kumar, K.: Seasonal variations in vertical distribution of meteor decay time as observed from meteor radars at 8.5N and 80N. Adv. Space Res. 63, 1661–1669 (2019) ADSCrossRefGoogle Scholar
  33. Rudawska, R., Matlovic, P., Toth, J., Kornos, L.: Independent identification of meteor showers in EDMOND database. Planet. Space Sci. 118, 38 (2015) ADSCrossRefGoogle Scholar
  34. Sekhar, A., Asher, D.J.: Meteor showers on Earth from sungrazing comets. Mon. Not. R. Astron. Soc. 433, L84 (2013) ADSCrossRefGoogle Scholar
  35. Singer, W., von Zahn, U., Weis, J.: Diurnal and annual variations of meteor rates at the arctic circle. Atmos. Chem. Phys. 4, 1355–1363 (2004) ADSCrossRefGoogle Scholar
  36. Stober, G., Matthias, V., Brown, P., Chau, J.L.: Neutral density variation from specular meteor echo observations spanning one solar cycle. Geophys. Res. Lett. 41, 6919–6925 (2014) ADSCrossRefGoogle Scholar
  37. Szasz, C., Kero, J., Pellinen-Wannberg, A., Mathews, J.D., Mitchell, N.J., Singer, W.: Latitudinal variations of diurnal meteor rates. Earth Moon Planets 95, 101–107 (2005) ADSCrossRefGoogle Scholar
  38. Vinkovic, D.: Thermalization of sputtered particles as the source of diffuse radiation from high altitude meteors. Adv. Space Res. 39, 574–582 (2007) ADSCrossRefGoogle Scholar
  39. Ye, Q., Brown, P.G., Campbell-Brown, M.D., Weryk, R.J.: Radar observations of the 2011 October Draconid outburst. Mon. Not. R. Astron. Soc. 436(1), 675–689 (2013) ADSCrossRefGoogle Scholar
  40. Yi, W., Reid, I.M., Xue, X., Murphy, D.J., Hall, C.M., Tsutsumi, M.: High- and middle-latitude neutral mesospheric density response to geomagnetic storms. Geophys. Res. Lett. 45, 436–444 (2018) ADSCrossRefGoogle Scholar
  41. Younger, P., Astin, I., Sandford, D., Mitchell, N.: The sporadic radiant and distribution of meteors in the atmosphere as observed by VHF radar at Arctic, Antarctic and equatorial latitudes. Ann. Geophys. 27, 2831–2841 (2009) ADSCrossRefGoogle Scholar
  42. Younger, J.P., Reid, I.M., Vincent, R.A., Murphy, D.J.: A method for estimating the height of a mesospheric density level using meteor radar. Geophys. Res. Lett. 42, 6106–6111 (2015) ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of AstronomyOsmania UniversityHyderabadIndia

Personalised recommendations